Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV

To obtain the temperature fields in ampoules under the radiation treatment we use the one-dimensional equations of the thermal conductivity on the coordinates along the axis which is congruent with the direction of the beam. The results of the calculations of temperature fields within the ampoule ar...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2005
Автори: Bakai, A.S., Tanatarov, L.V., Gonchar, V.Yu., Sergiyeva, G.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/80540
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV / A.S. Bakai, L.V. Tanatarov, V.Yu. Gonchar, G.G. Sergiyeva // Вопросы атомной науки и техники. — 2005. — № 4. — С. 32-39. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80540
record_format dspace
spelling Bakai, A.S.
Tanatarov, L.V.
Gonchar, V.Yu.
Sergiyeva, G.G.
2015-04-18T18:55:41Z
2015-04-18T18:55:41Z
2005
Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV / A.S. Bakai, L.V. Tanatarov, V.Yu. Gonchar, G.G. Sergiyeva // Вопросы атомной науки и техники. — 2005. — № 4. — С. 32-39. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 81.65.K; 28.41.T
https://nasplib.isofts.kiev.ua/handle/123456789/80540
To obtain the temperature fields in ampoules under the radiation treatment we use the one-dimensional equations of the thermal conductivity on the coordinates along the axis which is congruent with the direction of the beam. The results of the calculations of temperature fields within the ampoule are discussed for two cases: for the ampoule with the molten fluorides mix between three tested Hastelloy specimens (in section 1); and for the ampoule with exhalations of ftuorides salts (in section 2). These two situations are differed as in the energy losses of electron beam, as well in the mechanism of heat transport, that leads to essentially different temperature fields inside of the ampoule. It is shown that for ampoule with fluoride salts exhalations the stationary temperatures strongly depend from heat transport mechanisms and from layers thickness, that leads to conclusion about necessity to take into account both mechanisms of heat transport (thermal radiation and thermal conductivity) simultaneously.
При розрахунках температурних полей в ампулі під випромінюванням електронами нами використовувались одновимірні рівняння теплопровідності із вісью х, яка збігається із напрямком потоку електронів. Одержані коордінатні залежності температури для двох випадків: 1) для ампули із с розплавом солей флюориду між випробуваними зразками Хастелоя; 2) для ампули із парами солей флюориду між шарами ампули.. Показано, що у другому випадку сталий розподіл температури істотно залежить від механизму переносу тепла і товщини шарів, що дозволяє зробити висновок про необхідність одночасно брати до уваги обидва механізми переносу тепла (теплове випромінювання і теплопровідніть шарів).
Для вычисления температурных полей в ампуле под облучением электронами нами использовались одномерные уравнения теплопроводности с осью х, совпадающей с направлением потока электронов. Получены координатные зависимости температуры для двух случаев: 1) для ампулы с расплавом солей флюорида между испытуемыми образцами Хастеллоя; 2) для ампулы с парами солей флюорида между образцами Хастеллоя. Показано, что во втором случае установившееся распределение температуры существенно зависит от механизма переноса тепла и от толщины слоев, что позволяет сделать вывод о необходимости принимать во внимание оба механизма переноса тепла одновременно( тепловое излучение и теплопроводность слоев).
This work was supported in part by STCU, Project # 294.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
Розрахунки температурних полей у ампулах при радіаційних випробуваннях електронами з енергією 10 МеВ
Расчеты температурных полей в ампулах при радиационных испытаниях электронами с энергией 10 МэВ
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
spellingShingle Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
Bakai, A.S.
Tanatarov, L.V.
Gonchar, V.Yu.
Sergiyeva, G.G.
title_short Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
title_full Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
title_fullStr Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
title_full_unstemmed Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV
title_sort calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 mev
author Bakai, A.S.
Tanatarov, L.V.
Gonchar, V.Yu.
Sergiyeva, G.G.
author_facet Bakai, A.S.
Tanatarov, L.V.
Gonchar, V.Yu.
Sergiyeva, G.G.
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Розрахунки температурних полей у ампулах при радіаційних випробуваннях електронами з енергією 10 МеВ
Расчеты температурных полей в ампулах при радиационных испытаниях электронами с энергией 10 МэВ
description To obtain the temperature fields in ampoules under the radiation treatment we use the one-dimensional equations of the thermal conductivity on the coordinates along the axis which is congruent with the direction of the beam. The results of the calculations of temperature fields within the ampoule are discussed for two cases: for the ampoule with the molten fluorides mix between three tested Hastelloy specimens (in section 1); and for the ampoule with exhalations of ftuorides salts (in section 2). These two situations are differed as in the energy losses of electron beam, as well in the mechanism of heat transport, that leads to essentially different temperature fields inside of the ampoule. It is shown that for ampoule with fluoride salts exhalations the stationary temperatures strongly depend from heat transport mechanisms and from layers thickness, that leads to conclusion about necessity to take into account both mechanisms of heat transport (thermal radiation and thermal conductivity) simultaneously. При розрахунках температурних полей в ампулі під випромінюванням електронами нами використовувались одновимірні рівняння теплопровідності із вісью х, яка збігається із напрямком потоку електронів. Одержані коордінатні залежності температури для двох випадків: 1) для ампули із с розплавом солей флюориду між випробуваними зразками Хастелоя; 2) для ампули із парами солей флюориду між шарами ампули.. Показано, що у другому випадку сталий розподіл температури істотно залежить від механизму переносу тепла і товщини шарів, що дозволяє зробити висновок про необхідність одночасно брати до уваги обидва механізми переносу тепла (теплове випромінювання і теплопровідніть шарів). Для вычисления температурных полей в ампуле под облучением электронами нами использовались одномерные уравнения теплопроводности с осью х, совпадающей с направлением потока электронов. Получены координатные зависимости температуры для двух случаев: 1) для ампулы с расплавом солей флюорида между испытуемыми образцами Хастеллоя; 2) для ампулы с парами солей флюорида между образцами Хастеллоя. Показано, что во втором случае установившееся распределение температуры существенно зависит от механизма переноса тепла и от толщины слоев, что позволяет сделать вывод о необходимости принимать во внимание оба механизма переноса тепла одновременно( тепловое излучение и теплопроводность слоев).
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80540
citation_txt Calculation of temperature fields in ampoules under the radiation treatment by electrons with energy 10 MeV / A.S. Bakai, L.V. Tanatarov, V.Yu. Gonchar, G.G. Sergiyeva // Вопросы атомной науки и техники. — 2005. — № 4. — С. 32-39. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT bakaias calculationoftemperaturefieldsinampoulesundertheradiationtreatmentbyelectronswithenergy10mev
AT tanatarovlv calculationoftemperaturefieldsinampoulesundertheradiationtreatmentbyelectronswithenergy10mev
AT goncharvyu calculationoftemperaturefieldsinampoulesundertheradiationtreatmentbyelectronswithenergy10mev
AT sergiyevagg calculationoftemperaturefieldsinampoulesundertheradiationtreatmentbyelectronswithenergy10mev
AT bakaias rozrahunkitemperaturnihpoleiuampulahpriradíacíinihviprobuvannâhelektronamizenergíêû10mev
AT tanatarovlv rozrahunkitemperaturnihpoleiuampulahpriradíacíinihviprobuvannâhelektronamizenergíêû10mev
AT goncharvyu rozrahunkitemperaturnihpoleiuampulahpriradíacíinihviprobuvannâhelektronamizenergíêû10mev
AT sergiyevagg rozrahunkitemperaturnihpoleiuampulahpriradíacíinihviprobuvannâhelektronamizenergíêû10mev
AT bakaias rasčetytemperaturnyhpoleivampulahpriradiacionnyhispytaniâhélektronamisénergiei10mév
AT tanatarovlv rasčetytemperaturnyhpoleivampulahpriradiacionnyhispytaniâhélektronamisénergiei10mév
AT goncharvyu rasčetytemperaturnyhpoleivampulahpriradiacionnyhispytaniâhélektronamisénergiei10mév
AT sergiyevagg rasčetytemperaturnyhpoleivampulahpriradiacionnyhispytaniâhélektronamisénergiei10mév
first_indexed 2025-11-25T22:19:42Z
last_indexed 2025-11-25T22:19:42Z
_version_ 1850562663123255296
fulltext PACS: 81.65.K; 28.41.T CALCULATION OF TEMPERATURE FIELDS IN AMPOULES UNDER THE RADIATION TREATMENT BY ELECTRONS WITH ENERGY 10 MeV O.S. Bakai, L.V. Tanatarov, V.Yu. Gonchar and G.G. Sergiyeva National Science Center “Kharkiv Institute for Physics and Technology” Kharkiv, Ukraine, gsergeeva@kipt.kharkov.ua To obtain the temperature fields in ampoules under the radiation treatment we use the one-dimensional equations of the thermal conductivity on the coordinates along the axis which is congruent with the direction of the beam. The results of the calculations of temperature fields within the ampoule are discussed for two cases: for the ampoule with the molten fluorides mix between three tested Hastelloy specimens (in section 1); and for the ampoule with exhalations of ftuorides salts (in section 2). These two situations are differed as in the energy losses of electron beam, as well in the mechanism of heat transport, that leads to essentially different temperature fields inside of the ampoule. It is shown that for ampoule with fluoride salts exhalations the stationary temperatures strongly depend from heat transport mechanisms and from layers thickness, that leads to conclusion about necessity to take into account both mechanisms of heat transport (thermal radiation and thermal conductivity) simultaneously. INTRODUCTION Here the results of the calculations of temperature fields within the ampoule are discussed for two cases: for the ampoule with the molten fluorides mix between three tested metallic spacimens (in section 1); and for the ampoule with exhalations of ftuorides salts (in section 2). The later situation can take place in the case when the temperature of the molten fluorides mix is compared with the sublimation temperature, and the tested metallic specimens are located in exhalations of fluorides salts. These two situations are differed in the energy losses of electron beam, as well in the mechanism of heat transport, that leads to essentially different temperature fields inside of the ampoule. When the projecting the EITF test bench the choice of the geometry of the irradiated ampoules was made so that the energy losses of electron beam were equal to the amount of thermal energy irradiated by target. During the treatment mean current was regulated so that the temperature of the surfaces of ampoules was 650ºС. temperature fields within the ampoule is heterogeneous because of the intrinsic heterogeneity of its construction [1], and the finite values of the ampoule contents’ thermal conductivity coefficient. It is known that the corrosion processes are controlled by the velocity of chemical reactions and the diffusion transport which are essentially temperature dependent. That’s why the knowledge of the temperature distribution inside ampoules is very crucial when one analyzing the tests results. The distribution of energy losses of the electron beam within the ampoule was received by means of Monte-Carlo calculations in Ref. [2]. The ampoules and the assemblies are such that with sufficient accuracy we can consider the distribution of the energy losses and of the temperature as one-dimensional and essentially dependent only on the coordinates along the axis which is congruent with the direction of the beam. This means that we can use the one-dimensional equation of the thermal conductivity to obtain the temperature fields. We have not precition values of thermal conductivity coefficients of the molten fluorides mix, and of tested metallic specimens at the temperature ºC, and the data from Refs.[3-4] was used at the numerical estimation. 1. THE CALCULATION OF TEMPERATURE FIELDS WITHIN THE AMPOULE WITH THE MOLTEN FLUORIDES MIX Taken into account that the sizes of intrinsic heterogeneity (≤ 0.2 cm) along axis x, which is congruent with the direction of the beam (see fig. 1), are much less than vertical dimensions of ampoule (5 cm along axis y) [1], we can use the one-dimensional equation of the thermal conductivity for calculation of the temperature fields )(xT QdivJ t Tc Ev =+ ∂ ∂ . 650≥T Here and κEE divJQTdivJ −=∇−= ,κ is thermal conductivity coefficient. Energy flux , transported at point x by electron beam with initial energy is equal to )(xJ E According to our estimations the temperature in the middle of the ampoule is nearly ten degrees greater than on the surface of the ampoule. This result allow us to consider the evalution data from Refs.[3-4] satisfactory if the analysis of experimantal data for corrosion of tested metallic spacemens does not require calculations of greater accuracy. 0E ,)( ,' ' )'()()( 0 S WbJ dx x xE SE WbJxJ E x b EE =− ∂ ∂ −−= ∫ − (1) _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 32-39. 32 33 where is flux energy on irradiated surface of the ampoule, which is equal to beam power S ' ' )'()( 0 dx x xEExE x b ∫ − ∂ ∂ −=)( bJ E − W on 1cm , is energy losses of electron at point x. Here , (2) 2 )(/)( xxxE ϕ≡∂∂ is the energy of an electron at point x. Fig. 1. Temperature fields within the ampoule with molten fluoride salts under the radiation treatment Energy losses due to the processes of ionization and atomic excitation, are well discribed by Bloch-Bethe formula for a target with thickness less than the track lengh for electron[5]. The target ampoule is made from the Carbon-Carbon (C-C) composite material. But for C-C composite material lengh of electron track is ~2сm, and this formula cannot be used for thick layer (here thickness of C-C composite layer is 1.5 сm (see fig. 1)). The region Hastelloy Nickel-Molybdenum-Chromium alloy), the thickness of layer is equal cmhhh 06.0321 =Δ=Δ=Δ , (see fig. 1). According Ref. [2] the mean values of energy losses in these layers are equal to ( )3,65.0,7,8 3 333231 cm MeV cm MeV cm MeV hhh ≈≈≈ ϕϕϕ . bxaaxb <<−<<− , are the first (g1)and the second (g2) C-C composite layers ( ) with thermal conductivity coefficient .09.0,6.0 ,5,7 3433 3231 cm MeV cm MeV cm MeV cm MeV ff ff == == ϕϕ ϕϕ For the thermal conductivity coefficients fκ of molten fluoride salts and tested metallic specimens cmacmb 5.0,2 == hκ at we used evalution data from Refs. [3-4]: cmKsek erg710 KTK 9231000 ≥≥7.0| 900 ≈= KTgκ × [3]. For a thick target the main problem in energy losses calculations consists in taking into account multiple scattering of electrons, and in the calculation of the energy losses profile for each layer we used the results of the Monte Carlo computer modeling method from Ref. [2]. For the first C-C composite layer (g1) the mean value is sekKcm erg7102.0≈≈ hf κκ × . At thermal balance we can find the stationary distrbution of temperature fields within the ampoule from thermal conductivity equations with the source of heat (energy flux ) and sink of heat due to thermal radiaton by C-C composite layers in camera where EJ 3 1 /3 cmMeVg ≈ϕ=)(1 xgϕ , and for second C-C composite layer (g2) it is 4Tσ σ is Stephan-Boltzman constant. Let be the temperature fields for C-C composite sides of the ampoule, is the temperature field for i-th molten fluorides liquid mix layer (i=1,2,3.4), and is the temperature field for i-th tested metallic specimen hi (i=1,2,3). )(),( 21 xTxT gg 3 22 /03.0)( cmMeVx gg == ϕϕ . )(xTfi 5.05.0 ≤≤− xThe inside of the ampoule has four the layers of molten fluorides liquid mix (the thickness of each layer is equal fi )(xThi ), cmffff 205.04321 =Δ=Δ=Δ=Δ and three layers of tested metallic specimens (species of 1.1. THE TEMPERATURE FIELD FOR and the first integral of thermal conductivity is equal to THE C-C COMPOSITE FIRST LAYER '.)'( | )( 5.0 1 0 5.0 11 dxx SE W x T x xT x f x f f f f ∫ − −= −= = ∂ ∂ − ∂ ∂ ϕ κκThermal conductivity equation for the C-C composite first layer (9) 5.02 −≤≤− x is )( )(1 xJ xx xT x E g g ∂ ∂ = ∂ ∂ ∂ ∂ κ , After integration of (9) with the use second boundary 2 14 1 |)2( −=∂ ∂ =− x g gg x T T κσ condition (6) we receive the equation for the temperature , (4) fields ')')('( )5.0]()( )2([)]5.0()([ 5.0 1 0 5.0 2 1 0 4 111 dxxxx SE W xdxx SE W TTxT x f g gfff −− −+− −−=−− ∫ ∫ − − − ϕ ϕ σκwhere ~ 650ºC is the temperature of the )2(1 −gT irradiated surface of the first C-C composite layer. , Second boundary condition is 5.015.01 |)(|)( −=−= ∂ ∂ = ∂ ∂ xffxgg xT x xT x κκ , (5) and then after integrating (4) from to x we get 2− and the temperature field with mean values of energy losses is equal )2()(| )( 2 11 −−= ∂ ∂ − ∂ ∂ −= EEx g g g g JxJ x T x xT κκ , (6) )10(].)5.0( 2 5.1 )2()[5.0()]5.0()([ 0 1 0 1 4 111 +−− −−+=−− x SE W SE W TxTxT fg gfff ϕϕ σκ and taking into account the first boundary condition at x= (4), we receive 2− ' ' )'()2()2( )()2( )( 20 4 1 4 1 1 dx dx xdE SE WTJ xJT x xT x gE Eg g g ∫ − −−=−− −+−= ∂ ∂ σ σκ 34 . (7) The substitution of x=-0.295 into (10) gives us the equation for the temperature at the right hand boundary of the first layer of molten salts )295.0(1 −fT ]2/205.05.1()2(~[205.0 )]5.0()295.0([ 11 0 4 2 11 fg fff SE WT TT ϕϕσ κ −−−= =−−− So after integrating (7) from to x, we receive the temperature field for the first C-C composite layer : 2− . )(1 xTg In the first layer of Hastelloy 1h '')''(' )2()2()]2()([ 2 ' 2 1 0 4 111 dxxdx SE W TxTxT x x g gggg ∫ ∫ − − − −−+=−− ϕ σκ 235.0295.0 −≤≤− x the energy flux is , where . ∫ ∫ ∫∫ ∫ − −− − −= == x g x x x g x x g xxxdx dxxdxdxxdx 2 1 2 ' 1 2 ' 2 1 )')('(' ')''('''')''(' ϕ ϕϕ 110 235.0 1 0 205.05.1)295.0( ],')'()295.0([)( fg x fE EE dxxE SE WxJ ϕϕ ϕ −−=− −−= ∫ − , ' and after integration we receive )(1 xTh ]}.2/)295.0( 205.05.1[)2({ )295.0()]295.0()([ 1 11 0 4 1 11 h fgg fhf x SE WT xTxT ϕ ϕϕσ κ ++ ++−−× ×+=−− (11) The temperature difference on the boundaries of first C- C composite layer is ]. 2 5.1)2([5.1 )]2()5.0([ 1 0 4 1 11 gg ggg SE WT TT ϕσ κ −−= =−−− (8) The substitution of x=-0.235 into (11) gives us the equation for the temperature at the )235.0(1 −hT right hand boundary of the first layer of Hastelloy ).11(]}2/06.0205.05.1[ )2({06.0)295.0(| 111 0 4 11235.01 a SE W TTT hfg gffhf ϕϕϕ σκκ ++− −−+−=−1.2. THE TEMPERATURE FIELDS IN THE INSIDE OF THE AMPOULE Taking into account that all seven layers in the inside of the ampoule have essentially different values of energy losses, we must receive thermal conductivity equations separately. In the second layer of molten salts 2f 03.0235.0 −≤≤− x the energy flux is In the first layer of molten salts 1f ,06.0205.05.1)235.0( ],')'()235.0([)( 1110 235.0 1 0 hfg x fE EE dxxE SE WxJ ϕϕϕ ϕ −−−=− −−= ∫ − 295.05.0 −≤≤− x the energy flux is equal dxxEE dxxE SE WxJ g x fE )()5.0( ],')'()5.0([)( 5.0 2 10 5.0 1 0 ∫ ∫ − − − −=− −−= ϕ ϕ , that leads to the equation for the temperature )(2 xTf 1.3. THE TEMPERATURE FIELD FOR SECOND THE C-C COMPOSITE LAYER ]}.2/)235.0(06.0 205.05.1[)2({ )235.0()]235.0()([ 21 11 0 4 1 12 fh fgg hff x SE WT xTxT ϕϕ ϕϕσ κ +++ ++−−× ×+=−− (12) 25.0 ≤≤ xIn second the C-C composite layer the energy flux is equal ;205.006.0205.006.0205.0 06.0205.05.1)5.0( ],')'()5.0([)( 43322 1110 5.0 2 0 fhfhf hfg x gE EE dxxE SE WxJ ϕϕϕϕϕ ϕϕϕ ϕ −−−−− −−−−= −= ∫ Taking x=-0.03 we find the temperature )03.0(2 −fT at the right hand boundary of the second layer of molten salts: and the first integral of thermal conductivity equation is ]}2/205.006.0 205.05.1[)2({ 205.0)235.0()03.0( 21 11 0 4 1 12 fh fgg hfff SE WT TT ϕϕ ϕϕσ κκ ++ ++−−× ×+−=− '.)'(| 5.0 1 0 5.0 22 dxx SE W x T x T x fx g g g g ∫ − −= −= ∂ ∂ − ∂ ∂ ϕκκ (18) . (13) Using second boundary condition )5.0()5.0( 42 fg TT = after integration of (18) we receive second integral of thermal conductivity equation For the rest temperature fields in the inside of the ampoule the similar calculations are consequtively repeated, and we determine the temperature fields by means of the system of equations: )(),(),(),( 4332 xTxTxTxT fhfh ]}.2/)5.0(205.006,0 205.006,0205.006.0 205.05.1[)2({ )5.0()]5.0()([ 243 3221 11 0 4 2 42 gfh fhfh fgg fgg x SE WT xTxT ϕϕϕ ϕϕϕϕ ϕϕσ κ −+++ +++++ ++−−× ×−=− . (19) Second Hastelloy layer Taking x=2 in (19) we can find the temperature at the right hand boundary of the second layer of C-C composite. .03.003.0 ]},2/)03.0(06.0205.0 5.1[)2(){03.0 ()]03.0()([ 211 1 0 4 1 22 ≤≤− ++++ +−−+ +=−− x x SE WT xTxT fhf gg fhf ϕϕϕ ϕσ κ )2(2gT (14) Thus, in sections 1.1-1.3 we received the equations for the calculations of the temperature fields in each layer of ampoule under the radiation treatment by electrons with energy 10 MeV. These equations ought to be completed by the equation for determination of the temperature )2(1 −gTThird molten salts layer , for which above we used the result of the experimental measurements[2]. We get this equation from summarizing all the equations for the temperature difference on the boundaries of each layer: ( ) .235.003.0 ]},2/03.0235.006.0 205.05.1[)2({ )03.0()]03.0()([ 221 11 0 4 1 23 ≤≤ −+++ ++−−× ×−=− x x SE WT xTxT hfh fgg hff ϕϕϕ ϕϕσ κ (15) ]. )()( )([)]2()2([ 2 5.0 2 5.0 295.0 4 295.0 235.0 3 03.0 03.0 235.0 03.0 32 03.0 235.0 2 235.0 295.0 1 295.0 5.0 1 5.0 2 1 0 4 2 4 1 dxdx dxdxdx dxxdxdxx dxx SE WTT gf hfh fhf ggg ∫∫ ∫∫ ∫ ∫∫∫ ∫ ++ ++++ ++++ +=+− − − − − − − − − − ϕϕ ϕϕϕ ϕϕϕ ϕσ (20) Third Hastelloy layer .295.0235.0. ]},2/)235.0(06.0 235.006.0205.0 5.1[)2(){235.0 ()]235.0()([ 33 221 1 0 4 1 33 ≤≤ −++ ++++ +−−− −=− x x SE WT xTxT ff fhf gg fhf ϕϕ ϕϕϕ ϕσ κ (16) This estimation comes to agreement with the results of measurements [1] and of our calculations 650)2()2( 21 ≈≈− gg TT ºC. 1.4. THE RESULTS OF CALCULATIONS OF THE TEMPERATURE FIELDS Fourth molten salts layer 35 .5.0295.0 ]},2/)295.0(06.0 205.006.0205.0 5.1[)2(){295.0 ()]295.0()([ 33 221 1 0 4 1 34 ≤≤ −++ ++++ +−−− −=− x x SE WT xTxT fh fhf gg hff ϕϕ ϕϕϕ ϕσ κ (17) We caried out calculations of the temperature fieldsfor each layer of the ampoule under radiation treatment by electrons with energy 10 MeV. The area of an am¬poules assemblage м . The parameters of electron beam are: initial energy power beam /сm 2 . For all layers of the ampoule under radiation treatment we 2cS 3200 = ;100 MeVE = kwW 5= The third layer h3 of Hastelloy received nine equations with 0/ SEW kiki ϕϕ =′ , where k is label of layer, and i is number of this layer: .)(01.92739.0)235.0()295.0( ];2/)235.0(4.0317.1[ 2.0 235.0)235.0()( :/104.0,295.0235.0 33 33 7 3 KTT x xTxT cmergx fh fh h ≈−≅ −−−× × − += ×≈′≤≤ ϕ The C-C composite first layer :/1098.1,5.02 7 1 cmergx g ×≈′−≤≤− ϕ .)67.5923()5.0( ],2/)2(137.4[ 7.0 2923)( 1 11 KT xxxT g gg +≈− ′+− + +≅ ϕ . The fourth layer f4 of molten salts .)(96.92535.1)295.0()5.0( ];2/)295.0(09.0341.1[ 2.0 295.0)295.0()( :/1009.0,5.0295.0 34 34 7 4 KTT x xTxT cmergx hf hf f ≈−≅ −−−× × − −= ×≈′≤≤ ϕ The first layer of molten salts :/1095.4,295.05.0 7 1 cmergx f ×≈′−≤≤− ϕ .66.0)5.0()295.0( )];295.0(95.4 167.1[ 2.0 295,0)5.0()( 11 11 +−≅− +− − + +−≅ gf gf TT x xTxT , The C-C composite second layer :/1002,0,25.0 7 2 cmergx g ×≈′≤≤ ϕ .02.9237.2)5.0()2( ];2/)5.0(02.0359.1[ 7.0 )5.0()5.0()( 42 42 KTT x xTxT fg fg ≈−≅ −−−× × − += The first layer of Hastelloy 1h ./1026.7,235.0295.0 7 1 cmergx h ×≈′−≤≤− ϕ ]2/)295.0(26.7153.0[ 2.0 295.0)295.0()( 11 +− + +−= xxTxT fh , The results of calculations of temperature fields in ampoules under the radiation treatment by the electrons with energy 10 MeV show that typical for the energy losses of electron beam maximum is situated within the first half of the middle of an ampoule and leads to the highest temperatures in the first and second layers of molten salts and the first Hastelloy (nearly 7ºC relatively of the temperature of the surfaces of an ampoule, see fig.1). We can suppose that such small (~1%) temperature heterogeneities weakly become apparent in corrosion process and we may does not take account these heterogeneities at the analysis of the testing metallic specimens if the analysis of experimantal data for corrosion of tested metallic specimens does not require calculations of greater accuracy. 02.0)295.0()235.0( 11 −−=− fh TT ; .36.929]36.6)2([| 1275.0max,1 KKTT gxh ≅+−≈−= The second layer of molten salts 2f :/103.3,03.0235.0 7 2 cmergx f ×≈′−≤≤− ϕ .]65.0)235.0([)03.0( ];2/)235.0(3.328.0[ 2.0 235.0)235.0()( 12 12 KTT x xTxT hf hf −−≅− +−−× × + +−= The second layer h2 of Hastelloy But these temperature heterogeneities it is need to take into account in the case when the temperature in the molten fluoride salts (~660ºC ) is compared with their sublimation temperature and over long period (~ 700 hours) of testing time metallic specimens were located in exhalations of fluoride salts under atmospheric pressure. This situation considerably distinguishes from above studied and requires to be separately studied because the energy losses of electron beam in the ampoule without molten salts essentially distinguish from the losses in the ampoule with molten salts as well as the mechanisms of heat transport. .67.92833.0)03.0()03.0( ];2/)03.0(62.496.0[ 2.0 03.0)03.0()( :/1062.4,03.003.0 22 22 7 2 KTT x xTxT cmergx fh fh h ≈−−≅ +−−× × + +−= ×≈′≤≤− ϕ The third layer f3 of molten salts .)(40.92714.1)03.0()235.0( ];2/)03.0(4.0 1.1[ 2.0 03.0)03.0()( :/104.0,235.003.0 23 23 7 3 KTT x xTxT cmergx hf hf f ≈−≅ −− −− − += ×≈′≤≤ ϕ 2. THE CALCULATION OF TEMPERATURE FIELDS WITH IN THE AMPOULE WITH EXHALATIONS OF FLUORIDE SALTS UNDER THE RADIATION In these section we calculate the temperature fields for an ampoule which is located in camera with 36 temperature ºC of walls, and is irradiated by electrons with energy 10 MeV . The inside of the ampoule contains three layers of tested Hastelloy spacemens, and four spaces between spacemens which are filled up by exhalations of fluoride salts under atmospheric pressure. This means that thermal conductivity equations between spacemens are homogenius 37 300 ≅T 0/ 22 =∂∂ xTnexκ , (2.1) where exκ is thermal conductivity coefficient of the exhalations of fluoride salts. At thermal balance we can find the stationary distribution of temperature fields within the ampoule from thermal conductivity equations with the source of heat (energy flux ) and sink of heat due to thermal radiation by C-C composite layers in camera, and to thermal radiation by inner layers of the ampoule. The thermal conductivity equations for five solid state layers ( two are C-C composite ones with n=1 and n=5 and three layers are tested Hastelloy specimens) are EJ 5...2,1,/2 =−=∂∂ nxT nnn ϕκ , (2.2) where nκ is tne thermal conductivity coefficient of n- layer. For energy losses of electron )(/)( xxxE nn ϕ=∂∂ in each layer we use the results of Monte-Carlo calculations [8] (see fig.2, where empty squares are energy losses of secondary electrons, and filled squares are energy losses of primary electrons).With taking into account both mechanisms of heat exchange (thermal radiation and thermal conductivity) the boundary conditions for left-hand and right-hand boundaries of n- th layer are ,)()(| ,)()(| 21,1 4 2, 4 1,12 2,11 4 2,1 4 1,1 lTTTT x T lTTTT x T nnexnn n n nnexnn n n −+−= ∂ ∂ −+−= ∂ ∂ ++= −−= κσκ κσκ α α (2.3) Fig. 2. The results of Monte-Carlo calculations [8] of the energy losses of electron ( ) / ( )n nE x x xϕ∂ ∂ = for three Hastelloy layers within the ampoule with exhalations of fluoride salts between layers where l is thickness of the streak of fluorides salts exhalations between solid state layers, is the temperature on left boundary n-th layer at α,nT ,1=α and on right one at .2=α Integration of (2.2) from left boundary n-th layer to x leads to 1nx dxx x T x T x x n n n n n n )(| 1 1 ∫−∂ ∂ = ∂ ∂ = ϕκκ α , (2.4) where is coordinate of αnx −α boundary of n-th layer. Later on we would suppose that nn x ϕϕ ≈)( , and after second integration of (2.4) we have .')'( )(|])([ 1 111 ∫ −− −− ∂ ∂ =− = x x n n n nnnn n dxxx xx x TTxT ϕ κκ α (2.5) 2nxx = At lTTll lTTl l x TTT nnnexnn nnnnn n n nnnn /)(2/ )(2/ |][ 2,11 2 4 2,1 4 1 2 212 − − = −+− −−=− − ∂ ∂ =− κϕ σϕ κκ α , where is thickness of n-th layer. At we receive nl 2nxx = nnnnnn ex nnnn lTTTT l TTTT ϕκ σ =−+−+ +−+− −+ −+ )( )( 2,111,12 4 2,1 4 1, 4 1,1 4 2 . Let us to normalize the temperature on boundariesof n- th layer: 0201 /,/ TTVTTu nnnn ≡≡ , and from two last equations we receive the system of equations of fourth order for : nn Vu , 2 )( 1 4 1 4 n nnnnnnn VVVbubu μνν +++=++ −− ,(2.6) nnnn nnnnn VVV Vuuuu μν ν −−+− −=−+− −− ++ )( )( 1 4 1 4 1 44 1 . (2.7) 3 0 3 0 4 0 ,, TllT b T l ex n n n nn n σ κν σ κ σ ϕμ === . (2.8) Thus we received the system of the equations with boundary conditions for dimensionless temperatures on camera walls: Summarizing (2.7) from n=1 to n with taking into account boundary conditions leads to .1,1 01 ==+ VuN 38 1n - 4 4 2 21 1 4 1 1 1 4 4 3 2 3 2 4 4 2 2 21 1 4 4 1 1 4 4 2 21 1 4 ( ) 1 ( 1) ( ) ( ) .................................................... ( ) ( ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ n nn n n nn n n u u u u V V u u u u V V V V u u u u V V V V u n n m n n m n n m n - - - -- - - + - = = - + - - - + - = = - + - - - + - = = - + - - + 4 4 1 1 1 1 1 1 (1 ) n n n n i i u V V u un n n m - - - = = + + + - - + - е , (2.9) and to the balance equation ∑ = ++=+++ N i iNN VVuu 1 4 1 4 1 )1(2 μννν . (2.10) Rewriting (2.6) as 2 )( 1 4 1 4 n nnnnnnn VVuVbuu μνν +++−=+ −− , and equating right-hand part of (2.10) and (2.9), we receive the equation ] 2 1[ 1 4 1 1 1 uub Vu n n i inn nnn νμμνλ λ −−−++= += ∑ = − (2.11) With taken into account that nex κκ p we can consider 0≈ν , that let us express all : , and so on to , that let us to receive the equation for determination of the temperature on left- hand boundary of first C-C composite layer, )( 1uVV nn = ∑∑ − == − +−+−++= 1 1 4 1 44/14 1 1 4 1 1])2([ N i i N i inN uuV μμλ )( 111 uVV = :1u [ ]{ }44/14 321 4 121 4 1 4 1 4 1 1 1 1 1)]2/1(1[ Λ+++−+=− −−+−−+ μμλμ μ u uu b u . (2.12) Here 4/14 4321 4 133 ]1[ Λ++++−+=Λ μμμλ u , 4/14 54321 4 144 ]1[ Λ+++++−+=Λ μμμμλ u , .]1[ 4/1 54321 4 155 μμμμμλ +++++−+=Λ u Thus, determination of the temperature 0111 TuT = on the left-hand boundary of C-C composite first layer for stationary regime demands of solution (2.12), which contain with whole and fractional degrees. Analitical solution of this equation is difficult to find, and stationary distribution of the temperature for all layers of an ampoule was found by numerical method of solution of ten equations of fourth order (2.6-2.8) with boundary conditions .1,1 01 ==+ VuN 2.1. NUMERICAL SOLUTION OF SYSTEM EQUATIONS (2.6-2.7) For each layer with n=1,2,3,4,5 from (2.6-2.7) we have two reccurent formula ]2/) ([),,( 1 4 1 41 1 nnnn nnnnnnn VVu bubVVufV μνν −−−+ ++== −− − − (2.13) nnnnnn nnnnnn VVVuu VVVufuu μνν ν −−+−++ +===+ −− −++ )( ),,( 1 4 1 4 4 121 4 1 (2.14) Setted value from (2.13) we find with taking into account 1u 1V 10 =V : ( )2/)( 10 4 011 4 1 1 11 μνν −−−++= − VVububV For given and we find the solution of equations (2.13-2.14) for then and so on. Last step we do for . Value is need to come an agreement with second boundary condition 1u 1V 32 ,uV 43, uV 65, uV 6u 161 ==+ uuN , that we can do using variation method Neuton-Raphson for initial value . At numerical solution we used the results of Monte- Carlo calculations [8] (see fig. 2) and the mean values energy losses of electron are , 1u ,/1066.0 ,/109.9 /1086.13 ,/1052.14 ,/1098.1 7 5 7 4 7 3 7 2 7 1 cmerg cmerg cmerg cmerg cmerg ×≈ ×≈ ×≈ ×≈ ×≈ ϕ ϕ ϕ ϕ ϕ sekKcmerg /103.0 4×≈exκand value [3]. On fig. 3-4 we see the results of solution for two situations: i)on fig.3 we see temperature fields for ampoule without molten salts with taken into account only thermal radiation as between ampoule and camera wall, and so between camera layers (i.e. exa κκ ≈ =0). As it is seen, the temperature on right-hand of first C-C composite layer increases on ~5K from ºC on left-hand boundary. 64011 ≈T ,...16 1u creases to to 60042 ≈T ºC. For second C-C composite layer layer 5205251 ≈≈ TT ºC. Thus we see that for the ampoule with fluorides salts exhalations the stationary temperatures depend from heat transport mechanisms and from layers thickness. This leads to conclusion about necessity to take into account both mechanisms of heat transport (thermal radiation and thermal conductivity) simultaneously. Carried out calculations show that all sinks of heat (thermal radiation by C-C composite layers in camera and heat exchange between solid state layers and streaks with fluorides salts exhalations inside ampoule) don’t lead to overheating of layers of irradiated ampoule. This work was supported in part by STCU, Project # 294. Fig. 3. Temperature fields within the ampoule without molten fluoride salts under the radiation treatment (with taken into account only thermal radiation between REFERENCES layers) In Hastelloy layers we have ºC, and then the temperature decreases to ºC for third Hastelloy layer, and to second C-C composite layer from values ºC to ºC. 1. V.M. Аzhazhа, O.S. Bakai, I.V. Gurin, А.N. Dovbnya, N.V. Demidov, А.I. Zykov, E.S. Zlunin, S.D. Lavrinenko, L.K. Myakushko, О.А. Repihov, А.V. Tоrgovkin, B.M. Shirokov, B.I. Shramenko. Stend dlya radiatsionnyh ispytanij konstruktsionnyh materialov v uslovyah solevogo reaktora //Procceding XVI international conference: physics of construction matter and radiation materials science in condition of salts reactor”, 6-11september 2004 г., Аlushtа, Crimea, Ucraine (ННЦ ХФТИ, Харьков), c. 270 68032312221 ≈≈≈≈ TTTT 6404241 ≈≈ TT 55052 ≈T55551 ≈T ii) For determination of the contributions of each the mechanism of heat transport on fig. 4 we see the results of numerical solution of system equations (2.7-2.8) with taking into account as heat exchange between solid state layers and streaks with fluoride salts exhalations and with small [3] and so thermal radiation between solid state layers. At this case for the 2. А.С. Бакай, М.И. Братченко, С.В. Дюльдя. Моделирование профилей поглощения энергии электронных пучков в имитационных экспериментах по изучению радиационной стойкости хастеллоя в среде расплавленных фторидов //Труды XVI международной конференции по физике радиационных явлений и радиационному материаловедению, 6-11 сентября 2004г., Алушта, Крым, Украина. ННЦ ХФТИ, Харьков, c. 274. gexa κκκ 310~~ − temperature for first C-C composite layer we have ºC. For Hastelloy layers the temperature has maxima for l first and second Hastelloy layers 5901211 ≈≈ TT 3. В.С. Чиркин. Теплофизические свойства материалов ядерной техники. М.: “Атомиздат”, 1968, 484 с. 4. А.С. Бакай, А.В. Чечкин, В.В. Жук. Коррозионные свойства сплавов хастеллоя в расплавах фторидных солей. Препринт ННЦ ХФТИ (в печати, 2004) 5. L. Katz, A.S. Penfold //Rev.Mod.Phys. 1952, v. 24, p. 28–35. 6. Handbuch der Physic, Springer Verlag, Berlin, b. 54, 1958. 7. И.М. Неклюдов, Б.В. Борц, В.В. Ганн, Г.Д. Толсто¬ луцкая. Методология имитации радиационных повреждений с помощью ускорителей электронов и протонов //Вопросы атомной науки и техники. Серия ФРП и РМ. 2003, #3, с. 62. Fig. 4. Temperature fields within the ampoule without molten salt under the radiation treatment (with taken into account thermal radiation between layers as well as the heat exchange between layers and streaks with fluoride salts exhalations) 8. O.S. Bakaj, M.I. Bratchenko, S.V. Dyul’dya (to be published). 64532312221 ≈≈≈≈ TTTT ºC, and then slowly de- РАСЧЕТЫ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В АМПУЛАХ ПРИ РАДИАЦИОННЫХ ИСПЫТАНИЯХ ЭЛЕКТРОНАМИ С ЭНЕРГИЕЙ 10МЭВ А.С. Бакай, Л.В. Танатаров, В.Ю. Гончар и Г.Г. Сергеева Для вычисления температурных полей в ампуле под облучением электронами нами использовались одномерные уравнения теплопроводности с осью х, совпадающей с направлением потока электронов. Получены координатные зависимости температуры для двух случаев: 1) для ампулы с расплавом солей флюорида между испытуемыми образцами Хастеллоя; 2) для ампулы с парами солей флюорида между образцами Хастеллоя. Показано, что во втором случае установившееся распределение температуры существенно 39 зависит от механизма переноса тепла и от толщины слоев, что позволяет сделать вывод о необходимости принимать во внимание оба механизма переноса тепла одновременно( тепловое излучение и теплопроводность слоев). РОЗРАХУНКИ ТЕМПЕРАТУРНИХ ПОЛЕЙ У АМПУЛАХ ПРИ РАДІАЦІЙНИХ ВИПРОБУВАННЯХ ЕЛЕКТРОНАМИ З ЕНЕРГІЄЮ 10 МЕВ О.С. Бакай, Л.В. Танатаров, В.Ю. Гончар, і Г.Г. Сергієва При розрахунках температурних полей в ампулі під випромінюванням електронами нами використовувались одновимірні рівняння теплопровідності із вісью х, яка збігається із напрямком потоку електронів. Одержані коордінатні залежності температури для двох випадків: 1) для ампули із с розплавом солей флюориду між випробуваними зразками Хастелоя; 2) для ампули із парами солей флюориду між шарами ампули.. Показано, що у другому випадку сталий розподіл температури істотно залежить від механизму переносу тепла і товщини шарів, що дозволяє зробити висновок про необхідність одночасно брати до уваги обидва механізми переносу тепла (теплове випромінювання і теплопровідніть шарів). CALCULATION OF TEMPERATURE FIELDS IN AMPOULES UNDER THE RADIATION TREATMENT BY ELECTRONS WITH ENERGY 10 MeV INTRODUCTION When the projecting the EITF test bench the choice of the geometry of the irradiated ampoules was made so that the energy losses of electron beam were equal to the amount of thermal energy irradiated by target. During the treatment mean current was regulated so that the temperature of the surfaces of ampoules was 650ºС. temperature fields within the ampoule is heterogeneous because of the intrinsic heterogeneity of its construction [1], and the finite values of the ampoule contents’ thermal conductivity coefficient. It is known that the corrosion processes are controlled by the velocity of chemical reactions and the diffusion transport which are essentially temperature dependent. That’s why the knowledge of the temperature distribution inside ampoules is very crucial when one analyzing the tests results. The distribution of energy losses of the electron beam within the ampoule was received by means of Monte-Carlo calculations in Ref. [2]. The ampoules and the assemblies are such that with sufficient accuracy we can consider the distribution of the energy losses and of the temperature as one-dimensional and essentially dependent only on the coordinates along the axis which is congruent with the direction of the beam. This means that we can use the one-dimensional equation of the thermal conductivity to obtain the temperature fields. We have not precition values of thermal conductivity coefficients of the molten fluorides mix, and of tested metallic specimens at the temperature ºC, and the data from Refs.[3-4] was used at the numerical estimation. Taken into account that the sizes of intrinsic heterogeneity ( 0.2 cm) along axis x, which is congruent with the direction of the beam (see fig. 1), are much less than vertical dimensions of ampoule (5 cm along axis y) [1], we can use the one-dimensional equation of the thermal conductivity for calculation of the temperature fields . Energy losses due to the processes of ionization and atomic excitation, are well discribed by Bloch-Bethe formula for a target with thickness less than the track lengh for electron[5]. The target ampoule is made from the Carbon-Carbon (C-C) composite material. But for C-C composite material lengh of electron track is ~2сm, and this formula cannot be used for thick layer (here thickness of C-C composite layer is 1.5 сm (see fig. 1)). The region are the first (g1)and the second (g2) C-C composite layers ( ) with thermal conductivity coefficient × [3]. For a thick target the main problem in energy losses calculations consists in taking into account multiple scattering of electrons, and in the calculation of the energy losses profile for each layer we used the results of the Monte Carlo computer modeling method from Ref. [2]. For the first C-C composite layer (g1) the mean value is , and for second C-C composite layer (g2) it is . For the thermal conductivity coefficients of molten fluoride salts and tested metallic specimens at we used evalution data from Refs. [3-4]: × . At thermal balance we can find the stationary distrbution of temperature fields within the ampoule from thermal conductivity equations with the source of heat (energy flux ) and sink of heat due to thermal radiaton by C-C composite layers in camera where is Stephan-Boltzman constant. Let be the temperature fields for C-C composite sides of the ampoule, is the temperature field for i-th molten fluorides liquid mix layer (i=1,2,3.4), and is the temperature field for i-th tested metallic specimen (i=1,2,3). . (19) Taking x=2 in (19) we can find the temperature at the right hand boundary of the second layer of C-C composite. (20) 2. THE CALCULATION OF TEMPERATURE FIELDS WITH IN THE AMPOULE WITH EXHALATIONS OF FLUORIDE SALTS UNDER THE RADIATION Fig. 4. Temperature fields within the ampoule without molten salt under the radiation treatment (with taken into account thermal radiation between layers as well as the heat exchange between layers and streaks with fluoride salts exhalations) REFERENCES