Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy

Time dependencies for the parameters (current, voltage, inner resistance) of shortcut galvanic cell Hastelloy-carbon material have been studied in NaF-ZrF₄ eutectic melt at 600…650°C. Analysis of these data, together with the data on polarization of separate electrodes at open circuit conditions, sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2005
Hauptverfasser: Bakai, A.S., Volkov, S.V., Azhazha, V.M., Andriiko, A.A., Omelchuk, A.A., Buryak, M.I., Voronin, B.M., Lavrinenko, S.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80545
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Corrosion processes in zirconium fluoride-sodium fluoride melts.study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy / А.S. Bakai, S.V. Volkov, V.M. Azhazha, А.А. Аndriiko, А.А. Omelchuk, M.I. Buryak, B.M. Voronin, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 62-66. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80545
record_format dspace
spelling Bakai, A.S.
Volkov, S.V.
Azhazha, V.M.
Andriiko, A.A.
Omelchuk, A.A.
Buryak, M.I.
Voronin, B.M.
Lavrinenko, S.D.
2015-04-18T19:25:02Z
2015-04-18T19:25:02Z
2005
Corrosion processes in zirconium fluoride-sodium fluoride melts.study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy / А.S. Bakai, S.V. Volkov, V.M. Azhazha, А.А. Аndriiko, А.А. Omelchuk, M.I. Buryak, B.M. Voronin, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 62-66. — Бібліогр.: 3 назв. — англ.
1562-6016
PACS 81.40-WX
https://nasplib.isofts.kiev.ua/handle/123456789/80545
Time dependencies for the parameters (current, voltage, inner resistance) of shortcut galvanic cell Hastelloy-carbon material have been studied in NaF-ZrF₄ eutectic melt at 600…650°C. Analysis of these data, together with the data on polarization of separate electrodes at open circuit conditions, showed that shortcut current is related to the rate of corrosion of the alloy contacted with carbon, if Zr metal is absent in the system. In presence of Zr, the current corresponds to the rate of zirconium reaction with the melt (related to unit surface of the Hastelloy electrode), and can be used for studies of dissolution kinetics of Zr metal in the melt. It was found that contact of the alloy with carbon material results in the increase of corrosion rate both in pure eutectics and with the additives of LaF₃. Presence of Zr metal suppresses the corrosion process.
Вивчена зміна в часі параметрів (струм, напруга, внутрішній опір) короткозамкненого гальванічного елемента хастелой/вуглецевий матеріал в евтектичному розплаві NaF-ZrF₄ при 600-650°C. Аналіз цих даних в сукупності з даними поляризаційних вимірювань на окремих електродах при розімкненому колі показав, що струм короткого замикання відповідає швидкості корозії сплаву в контакті з вуглецем при умові, якщо металічний Zr в системі відсутній. В присутності Zr цей струм визначається швидкістю взаємодії цирконію з розплавом (віднесеної до одиниці поверхні хастелою), що може бути використано для дослідження кінетики розчинення цирконію в розплаві. Встановлено, що контакт сплаву з вуглецем посилює корозію як в чисто евтектичному розплаві, так і з добавленням LaF₃. Присутність металічного Zr пригнічує корозійний процес.
Исследована временная зависимость параметров (ток, напряжение, внутреннее сопротивление) короткозамкнутого гальванического элемента хастеллой/углеродный материал в эвтектическом расплаве NaF-ZrF₄ при 600-650°C. Анализ этих данных, в совокупности с данными поляризационных измерений на отдельных электродах при разомкнутой цепи, показал, что ток короткого замыкания соответствует скорости коррозии сплава в контакте с углеродом при условии, если металлический Zr в системе отсутствует. В присутствии же Zr этот ток определяется скоростью взаимодействия циркония с расплавом (отнесенной к единице поверхности хастеллоя), что может быть использовано для исследования кинетики растворения циркония в расплаве. Установлено, что контакт сплава с углеродом усиливает коррозию как в чисто эвтектическом расплаве, так и с добавками LaF₃. Присутствие же металлического Zr подавляет коррозионный процесс.
The work was supported by STCU Project #294.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
Корозійні процеси в розплаві фторидів цирконію і натрію. Дослідження короткозамкненого елемента C/(ZRF₄ – NAF)ЕВТ/Хастеллой
Коррозионные процессы в расплаве фторидов циркония и натрия. Исследование короткозамкнутого элемента C/(ZRF₄ – NAF)ЕВТ/Хастеллой
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
spellingShingle Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
Bakai, A.S.
Volkov, S.V.
Azhazha, V.M.
Andriiko, A.A.
Omelchuk, A.A.
Buryak, M.I.
Voronin, B.M.
Lavrinenko, S.D.
title_short Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
title_full Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
title_fullStr Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
title_full_unstemmed Corrosion processes in zirconium fluoride-sodium fluoride melts.Study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy
title_sort corrosion processes in zirconium fluoride-sodium fluoride melts.study of shortcut cell c/(zrf₄ – naf)eut/hastelloy
author Bakai, A.S.
Volkov, S.V.
Azhazha, V.M.
Andriiko, A.A.
Omelchuk, A.A.
Buryak, M.I.
Voronin, B.M.
Lavrinenko, S.D.
author_facet Bakai, A.S.
Volkov, S.V.
Azhazha, V.M.
Andriiko, A.A.
Omelchuk, A.A.
Buryak, M.I.
Voronin, B.M.
Lavrinenko, S.D.
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Корозійні процеси в розплаві фторидів цирконію і натрію. Дослідження короткозамкненого елемента C/(ZRF₄ – NAF)ЕВТ/Хастеллой
Коррозионные процессы в расплаве фторидов циркония и натрия. Исследование короткозамкнутого элемента C/(ZRF₄ – NAF)ЕВТ/Хастеллой
description Time dependencies for the parameters (current, voltage, inner resistance) of shortcut galvanic cell Hastelloy-carbon material have been studied in NaF-ZrF₄ eutectic melt at 600…650°C. Analysis of these data, together with the data on polarization of separate electrodes at open circuit conditions, showed that shortcut current is related to the rate of corrosion of the alloy contacted with carbon, if Zr metal is absent in the system. In presence of Zr, the current corresponds to the rate of zirconium reaction with the melt (related to unit surface of the Hastelloy electrode), and can be used for studies of dissolution kinetics of Zr metal in the melt. It was found that contact of the alloy with carbon material results in the increase of corrosion rate both in pure eutectics and with the additives of LaF₃. Presence of Zr metal suppresses the corrosion process. Вивчена зміна в часі параметрів (струм, напруга, внутрішній опір) короткозамкненого гальванічного елемента хастелой/вуглецевий матеріал в евтектичному розплаві NaF-ZrF₄ при 600-650°C. Аналіз цих даних в сукупності з даними поляризаційних вимірювань на окремих електродах при розімкненому колі показав, що струм короткого замикання відповідає швидкості корозії сплаву в контакті з вуглецем при умові, якщо металічний Zr в системі відсутній. В присутності Zr цей струм визначається швидкістю взаємодії цирконію з розплавом (віднесеної до одиниці поверхні хастелою), що може бути використано для дослідження кінетики розчинення цирконію в розплаві. Встановлено, що контакт сплаву з вуглецем посилює корозію як в чисто евтектичному розплаві, так і з добавленням LaF₃. Присутність металічного Zr пригнічує корозійний процес. Исследована временная зависимость параметров (ток, напряжение, внутреннее сопротивление) короткозамкнутого гальванического элемента хастеллой/углеродный материал в эвтектическом расплаве NaF-ZrF₄ при 600-650°C. Анализ этих данных, в совокупности с данными поляризационных измерений на отдельных электродах при разомкнутой цепи, показал, что ток короткого замыкания соответствует скорости коррозии сплава в контакте с углеродом при условии, если металлический Zr в системе отсутствует. В присутствии же Zr этот ток определяется скоростью взаимодействия циркония с расплавом (отнесенной к единице поверхности хастеллоя), что может быть использовано для исследования кинетики растворения циркония в расплаве. Установлено, что контакт сплава с углеродом усиливает коррозию как в чисто эвтектическом расплаве, так и с добавками LaF₃. Присутствие же металлического Zr подавляет коррозионный процесс.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80545
citation_txt Corrosion processes in zirconium fluoride-sodium fluoride melts.study of shortcut cell C/(ZrF₄ – NaF)EUT/Hastelloy / А.S. Bakai, S.V. Volkov, V.M. Azhazha, А.А. Аndriiko, А.А. Omelchuk, M.I. Buryak, B.M. Voronin, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 62-66. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT bakaias corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT volkovsv corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT azhazhavm corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT andriikoaa corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT omelchukaa corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT buryakmi corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT voroninbm corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT lavrinenkosd corrosionprocessesinzirconiumfluoridesodiumfluoridemeltsstudyofshortcutcellczrf4nafeuthastelloy
AT bakaias korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT volkovsv korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT azhazhavm korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT andriikoaa korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT omelchukaa korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT buryakmi korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT voroninbm korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT lavrinenkosd korozíiníprocesivrozplavíftoridívcirkoníûínatríûdoslídžennâkorotkozamknenogoelementaczrf4nafevthastelloi
AT bakaias korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT volkovsv korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT azhazhavm korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT andriikoaa korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT omelchukaa korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT buryakmi korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT voroninbm korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
AT lavrinenkosd korrozionnyeprocessyvrasplaveftoridovcirkoniâinatriâissledovaniekorotkozamknutogoélementaczrf4nafevthastelloi
first_indexed 2025-11-24T11:37:30Z
last_indexed 2025-11-24T11:37:30Z
_version_ 1850845413832130560
fulltext PACS 81.40-WX CORROSION PROCESSES IN ZIRCONIUM FLUORIDE – SODIUM FLU­ ORIDE MELTS. STUDY OF SHORTCUT CELL C/(ZrF4 – NaF)EUT/HASTELLOY А.S. Bakai1, S.V. Volkov2, V.M. Azhazha1, А.А. Аndriiko3, А.А. Omelchuk2, M.I. Buryak2, B.M. Voronin2, S.D. Lavrinenko1 1National Science Center Kharkov Institute of Physics and Technology,Akademicheskaya str. 1, 61106 Kharkov, Ukraine, e-mail: bakai@kipt.kharkov.ua ; 2Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Science, Palladin avenue 32/34, 03680 Kiev 142,Ukraine, e-mail: omelchuk@ionc.kar.net; 3National Technical University “KPI”, Department of Chemistry, Pobedy avenue 37, 03056 Kiev-56, Ukraine, e-mail: andriiko@xtf.ntu-kpi.kiev.ua Time dependencies for the parameters (current, voltage, inner resistance) of shortcut galvanic cell Hastelloy-car­ bon material have been studied in NaF-ZrF4 eutectic melt at 600…650oC. Analysis of these data, together with the data on polarization of separate electrodes at open circuit conditions, showed that shortcut current is related to the rate of corrosion of the alloy contacted with carbon, if Zr metal is absent in the system. In presence of Zr, the current corresponds to the rate of zirconium reaction with the melt (related to unit surface of the Hastelloy electrode), and can be used for studies of dissolution kinetics of Zr metal in the melt. It was found that contact of the alloy with car­ bon material results in the increase of corrosion rate both in pure eutectics and with the additives of LaF3. Presence of Zr metal suppresses the corrosion process. INTRODUCTION It is known that Ni-Mo alloy (trademark Hastelloy) are relatively stable in zirconium fluoride molten mix­ tures and can be used as the material for technical appli­ cations of such melts, in particular, in nuclear power technologies. That is why studies of its corrosion resis­ tance in such media are of practical interest. Corrosion of Hastelloy has been studied earlier by the electrochemical technique, X-ray analysis, SEM and metallography [1]. Corrosion currents were found to be about 10-2 mA/cm2 depending on the preliminary heat treatment and irradiation. This is fairly good stability for most practical applications. The above mentioned data correspond to the behav­ ior of the alloy contacted with the melt only. However, the metal in some important cases is in long-term con­ tact with graphite or other carbon material. One can ex­ pect the differences in corrosion resistance of the alloy because of the formation of electrochemical couple working as a corrosion shortcut galvanic cell. This pa­ per presents some results on the corrosion behavior of Hastelloy in contact with carbon material. Processes in pure ZrF4-NaF eutectic melt and in the presence of the LaF3 and Zr metal additives were studied. EXPERIMENTAL Linear sweep voltammetry was used for studies of corrosion processes at separate electrodes. The voltam­ mograms were taken by means of the PC governed Po­ tentiostat PI-50 at scan rate 2 mV/s vs. classy carbon reference electrode (RE) in case of the alloy and vs. Hastelloy (H) RE when C electrode was studied. Long-term experiments with the electrochemical cell C/(ZrF4 – NaF)eut/H were performed in glassy carbon or graphite (СС composite) crucibles where the walls served as a C electrode (~35 cm2 area was in contact with the melt). Hastelloy plate of 2cm2 area was used as second electrode. The open circuit voltage was measured with high in­ put resistance electronic milivoltmeter V7-21. Mil­ iampermeter with low inner resistance was used for measurement of shortcut current of the cell. The cell’s resistance was checked with AC bridge R5083, frequen­ cy was 100 kHz. RESULTS AND DISCUSSION Several electrochemical reactions should be consid­ ered in the analysis of the processes in the cell: 1. Reduction of zirconium (IV) to low valence com­ pounds. Though the process is a complex multi-step one [2], we denote it by the simplified reaction: Zr(IV) +2e- = Zr(II) (1) This is the main cathode reaction on both electrodes. The reaction (1) could be reversible. That is, we should take into account the reverse (anode) reaction after the accumulation of significant amount of low valence species in the melt: Zr(II) = Zr(IV) +2e- (1,a) 2. The anode process on the alloy electrode is the elec­ trochemical oxidation of the metal: Me = Men+ + ne-, (2) where Me = Ni (main component) or Mo, Cr, Ti, Fe (doping metals). _______________________________________________________________________________ 62 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66. mailto:bakai@kipt.kharkov.ua 3. No reductant species other than carbon are present in the system at the initial time period; then the oxida­ tion of carbon should be the main anode reaction at C electrode of the cell. Basically, it must be the elec­ trochemical fluorination of the carbon1: С + xF- = CFx + xe-/. (3) The reactions (1) and (2) proceed with equal rates in open circuit conditions. The polarization curves of the electrode plotted in semi-logarithm scale can be used for calculation of stationary potentials and corrosion cur­ rents. Fig. 1 shows an example of such plot. -400 -300 -200 -100 0 100 200 300 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 lgi кз =-0.8 (mA/cm2) S17 lgi c =-2.08 mA/cm2 lg i, m A /c m 2 E, mV Fig. 1. Typical corrosion diagram of Hastelloy (vs. glassy carbon RE) in a fresh melt ZrF4 – NaF, 600oC. The arrow shows an expected shortcut current (see below) The curves in Fig. 1 were taken vs. GC reference electrode. It was noticed that, in freshly prepared melt, the stationary potential, which can be determined at in­ tersect point of the linear branches of cathode and anode curves, attains a value close to -200 mV. In course of the long-time exposure of the melt in carbon container, the potential gradually shifts to more positive values (Fig. 2). -300 -200 -100 0 100 200 300 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 139_2_back lgic=-0.74 mA/cm2 lg i, m A /c m 2 E, mV Fig. 2. Corrosion diagram of the alloy sample after prolonged treatment in the melt for several days Gradual displacement of the stationary potential to­ ward positive values was also found in the experiments where OCV of the cell was measured for several days (Fig. 3). Disregarding the transient processes after melt­ 1 The side reaction С + О2- = СО + 2е- is also possible if the presence of oxide compounds in the melt cannot be neglected; this possibility should not effect our analysis of the problem. ing the electrolyte, one can see almost linear time drift of the potential to negative side. 0 1 2 3 4 5 6 7 8 9 1011121314151617181920 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 E , V Hours Fig. 3. Stationary potential of the alloy vs. GC mea­ sured in daytime for 4-day period. The transients after the vertical lines result from the termination of the process when the electrolyte was repeatedly crys­ tallized and melted again In our opinion, such drift of the potential vs. GC elec­ trode results rather from the change of GC potential than the metal one. Polarization curves of carbon elec­ trode vs. the alloy RE, Fig. 4, support this conclusion. -1000 -800 -600 -400 -200 0 200 400 600 800 1000 1200 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 lg |i| , m A /c m 2 E vs "X", mVFig. 4. Semi-logarithm plot of the polarization curves of GC electrode vs. H RE Linear parts of the dependencies in Fig. 4 intercept at the potential value near +200 mV vs. H, which is con­ sistent with the stationary potential difference obtained from the polarization curves of the alloy vs. GC elec­ trode, Fig. 1. However, the current densities on GC electrode are much higher, which evidences essentially larger rates of the electrochemical reactions at this elec­ trode. These reactions in a fresh electrolyte have to be the oxidation of carbon (3) and reduction of zirconium (IV) (1). Upon a time, such processes on the carbon electrode, with its large surface area and high rates of electro­ chemical transformations, should result in the accumu­ lation of Zr(II) low valence species in the bulk and, ac­ cordingly, to development of the parallel reaction of its anode oxidation (1a). It means that, in open circuit con­ ditions, the potential of GC electrode should approach the value of equilibrium potential of Zr(IV)/Zr(II) cou­ ple, which, in turn, is the more negative the higher is the concentration of Zr(II) species in the electrolyte. Thus, the potential of GC electrode becomes more negative due to the accumulation of low valence Zr(IV) _______________________________________________________________________________ 63 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66. reduction products in the melt. It manifests itself experi­ mentally as the drift of the potential of alloy vs. GC to­ ward more positive values comparatively to the starting point (fig. 2,3). The potentials of both electrodes approach each other when the cell is shortened. The potential differ­ ence then should be determined by the value of shortcut current and inner resistance of the cell: Δϕ=I sh R . (4) The inner resistance was periodically checked in course of the experiments. The results are given in Fig. 5. 0 200 400 600 800 1000 0 10 20 30 40 50 0 2 4 6 8 10 12 R , O hm Time, hours ∆ϕ R ∆ ϕ, m V Fig. 5. Time dependencies of inner resistance and ohmic drop on the cell (-)С/(ZrF4-NaF)eut/H(+) in long- time continuous experiments. Temperature 600оС As follows from the data above, the cell’s resistance is changing from tenth to several tens of mV in a com­ plex manner. Meanwhile, the potential difference, calculated from experimental data by the formula (4), is of a few mV only. Since the value of OCV is of 2 orders higher, we can neglect the ohmic potential drop considering the po­ tentials equal for both electrodes when the cell is short­ ened. Turning back to the polarization curves of separate electrodes (Fig. 1-3), two important points must be em­ phasized. Fist, as it was already mentioned, partial cur­ rent densities at stationary potential are much larger for GC than for the H electrode. Second, the surface area for GC is also much larger (the ratio of GC to H sur­ faces in the experiments was 12-15). Thus, it is evident that shortening the cell practically could not effect the potential of GC, while the potential of H electrode would change and attain the value almost the same as the open circuit potential of GC electrode. From these considerations we can estimate the short­ cut current from the polarization curves of H electrode vs. C as the current at zero potential. Analysis of the data available shows that shortcut current density (per unit surface of H electrode) should be about 100…200 mcА/сm2 (for example, 160 mcA/cm2 for the sample of Fig. 1). The direct measurements, which are represented below, confirm this conclusion. Fig. 6 shows the time dependence of shortcut cell op­ erated continuously for about 2 months. The dynamics of system is rather complicated – non-linear oscillations are observed with the period about 200 hours. As it was shown in [3], such behavior of an electrochemical sys­ tem may result from the effect of feedbacks between sub-systems (electrodes), which are interconnected via the bulk of the electrolyte. 0 200 400 600 800 1000 1200 100 150 200 250 300 350 400 450 500 550 I, m c A t, hours X108 Fig. 6. Time dependence of shortcut current of the cell (-)Х108/ZrF4 – NaF/C(+), Temperature 600оС, SC = 35 sm2, SH = 2.5 cm2 In such situation, the time constant of the interac­ tion, which approximately corresponds to the period of oscillations (if the conditions exist for its development), can be determined from the formula T≈ 2 ⋅π⋅δ⋅V D⋅S c⋅S a , (5) where V is a bulk volume of the electrolyte, δ the thick­ ness of diffusion layer; D the diffusion coefficient, and Sc, Sa the surface areas of electrodes. The calculations by this formula show that, in case of “common” diffusion through the diffusion layers in molten electrolytes (the order of values: δ~ 10-2 cm D~10-5 cm2/s), the oscillation period should be about 10 hours, which is much less than observed by an order of value. Reasons for such disagreement could be an increase of diffusion distance (δ) or decrease of diffusion coeffi­ cient D or both of these. We assumed that the diffusion processes could be retarded due to its occurrence not only in the melt but in solid also. To check this assumption, we prepared a cross-section of the electrode after durable exposition in melt (Fig. 7). Fig. 7. SEM photograph of cross-section after durable expo­ sure in ZrF4 – NaF + 6,7%LaF3 melt _______________________________________________________________________________ 64 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66. In Fig. 7 one can see, under the layer of frozen elec­ trolyte, a thin (~1mcm) film of reaction products, which could affect the process. However the investigation of the composition of alloy along the cross-section evi­ dences another most probable reason (Fig. 8). As follows from the data of Fig. 8, the doping metals (Cr, Al, Ti) are oxidizing rather than the main component Ni. Hence, its diffusion to the surface should effect the overall kinetics. 0 5 10 15 20 25 30 35 76 78 80 82 84 86 88 90 0 2 4 6 8 10 12 Ni C on te nt o f N i, w t.% Distanse from the edge, mcm C on te nt o f M o, C r, Fe , A l, Ti , w t.% Ti, Al Fe Cr Mo Fig. 8. Composition of the alloy after durable treatment in the melt along the cross-section of Fig.7. The data obtained by X-ray microanalysis It can be confirmed by comparing of the rate of diffu­ sion with the observed corrosion current: i nF =D dC dx , (6) where C is the concentration of oxidized species and i is mean corrosion current density. The derivative in the right of (6) can be estimated from the data of Fig.7 as a slope of concentration profile, and average current from its time dependency. The calculations give D = 1,5*10-10 см2/с, which is consistent with common values for the diffusion in solids. Thus, the dynamics of the system is determined by complicated set of processes including slow transport of the alloy’s components from the bulk metal to the sur­ face. Development of mathematic model of the system and its theoretical analysis is necessary for deeper in­ sight. Considering the shortcut current of the cell as an oxi­ dation current of Hastelloy (reaction 2), one can calcu­ late the weight loss of the sample from total charge con­ sumed, which can be found as the integral of current- time dependencies. For the data of Fig.6, such calcula­ tion gives Q=339 mAh and ∆m=320 mg for the reaction of Cr oxidation. Such estimation is rough because other metals (Ti, Al) should also oxidize. Additions of lanthanum fluotide to the electrolyte do not change the qualitative character of the process (Fig. 9). This is expectable, because La metal is very chemi­ cally active and its fluoride could hardly ever be re­ duced thus affecting the processes in the cell. The behavior of the cell is somewhat different in case when CC composite carbon material is used instead of glassy carbon (Fig. 10). After 12 days of continuous work, the sign of electrodes changed and the metal elec­ trode became positive. Higher chemical activity and larger real surface of the CC material comparatively to GC is evidently the rea­ son for this. The reduction of Zr(IV) (1с) in this case is then faster and higher is the rate of accumulation of Zr intermediates in the melt. Thus, potential of C electrode moves far to the negative values and becomes eventual­ ly more negative than the Hastelloy. 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 I, m cA Time, hours X17 X23-2 Fig. 9. Time dependencies of shortcut currents for the cells (-)Х17/ZrF4 – NaF/C(+) and (-)Х23-2/ZrF4–NaF+6,7%LaF3/C(+). The conditions are similar to that of Fig. 5 100 200 300 400 500 -20 -10 0 10 20 30 40 50 60 I, m cA Time, hours X115 Fig. 10. Shortcut current of the cell Х108/ZrF4 – NaF/C, where С – СС composite material After the signs change, reduction reaction prevails at H electrode and corrosion process is suppressed. The carbon electrode becomes an anode of the cell from the very beginning (the sign “-“) if Zr metal is added to the melt. Zirconium is deposited on the bottom of carbon crucible, which is also the C electrode of the cell. Being an active metal, it dissolves anodically: Zr = Zr(IІ) +2e-. (7) Conjugated cathode reaction (1) proceeds in parallel. Hence, total process at C electrode is the dissolution of zirconium metal, which passes into the melt in form of intermediate valence species. The process at H electrode is mainly the cathode reac­ tion (1), the corrosion reaction can be neglected. Its rate is: I 1 H=i1 H S H , (8) where i1 H is current density, S H is the surface area of H electrode.This I 1 H is the same shortcut current, _______________________________________________________________________________ 65 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66. which we can measure. It is equal to algebraic sum of the currents related to the reactions (1) and (6) at C elec­ trode. Since the potential difference between the two elec­ trodes in shortcut cell Δϕ=IR is a few mV only (see above), we can consider the reaction (1) to proceed at the same potentials on both electrodes. Hence, the cur­ rent density of this process at both electrodes should be practically the same: i1 H=i 1 C=i1 . (9) Then, following conclusion comes from the above: The H electrode serves as a probe for direct rate mea­ surement of the reaction of Zr metal with the melt at its dissolution: I R S C =I  1 S H  1 S C  (10) or, taking into account that Sc >> S x , I R≃ I S H S C . (11) That is, measuring the shortcut current allows for direct determination of reaction rate of Zr metal with the melt according to the equation: Zr + Zr(IV) = 2Zr(IІ). (12) Figs. 11 and 12 present the data for two electrolytes, one of them containing additives of LaF3. 20 40 60 80 100 120 140 160 -200 0 200 400 600 800 1000 1200 1400 I, m cA Time, hours X23-3 Fig. 11. Time dependence of shortcut current for the cell (-)С/ZrF4 – NaF + Zr/Х23(+). Zirconium content 3,5%, temperature 600оС, electrode surface areas as in Fig. 6 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 I, m cA Time, hours X23-1 Fig. 12. Chortcut current for similar cell, Fig. 9, with 5% LaF3 and 7,5% Zr In spite of the oscillations, the current tends to de­ crease in both cases. Seemingly, the process (11) is over in 50 – 100 hours. The question upon the character of formed products is still open. Seems that they are hardly soluble in the melt and form solid deposits both on the metal (which is proved experimentally) and on the car­ bon surfaces. CONCLUSIONS As follows from the results of this work, measure­ ments of shortcut currents of the cell Hastelloy/melt/car­ bon, together with analysis of polarization curves of separate electrodes, can be used as a method for investi­ gation of the electrochemical reactions in Hastelloy – fluoride melt – carbon system. Following conclusions can be drawn: − corrosion of Hastelloy enhances in the melt ZrF4 – NaF (eut) if the alloy is in contact with carbon mate­ rial; − the shortcut current corresponds to the rate jf corro­ sion, which can be used to estimate the depth of cor­ rosion from these data; − additions of lanthanum fluoride to zirconium fluo­ ride – sodium fluoride melt does not significantly ef­ fect the corrosion processes; − zirconium metal reacts with the melt. If it is present in the system, measurement of shortcut currents per­ mits to study the rate of this reaction in a long-term process. The work was supported by STCU Project #294. REFERENCES 1. S.V. Devyatkin, S.V. Volkov, А.А.Omel’chuk, A.S. Bakai. Electrochemical behaviour Ni-Mo alloys and alloy additions under anodic polarization in NaF– ZrF4 melts //Euchem 2004 Molten Salts Conference Proceedings. 20-25 June 2004. Wroclaw 2004, p. 154–159. 2.А.А. Аndriiko, О.I. Boiko Studies of intervalence equilibriums in ionic melts by electrochemical methods //Ukrainian Chem. Journ. 1987, v. 53, #12, p. 1279–1286. 3.A.A. Andriiko, E.V. Panov, A.P. Mon’ko. Solid film at the anode influences the electrorefining of polyvalent metals. Bifurcation analysis of the problem //J. Solid State Electrochemistry. 1998, v. 2. p. 198–203. КОРРОЗИОННЫЕ ПРОЦЕССЫ В РАСПЛАВЕ ФТОРИДОВ ЦИРКОНИЯ И НАТРИЯ. ИССЛЕДОВАНИЕ КО­ РОТКОЗАМКНУТОГО ЭЛЕМЕНТА C/(ZRF4 – NAF)ЕВТ/ХАСТЕЛЛОЙ _______________________________________________________________________________ 66 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66. А.С. Бакай, С.В. Волков, В.М. Ажажа, А.А. Андрійко, А.А. Омельчук, Н.И. Буряк, Б.М. Воронин, С.Д. Лавриненко Исследована временная зависимость параметров (ток, напряжение, внутреннее сопротивление) короткозамкнутого гальванического элемента хастеллой/углеродный материал в эвтектическом расплаве NaF-ZrF4 при 600-650oC. Анализ этих данных, в совокупности с данными поляризационных измерений на отдельных электродах при разомкнутой цепи, показал, что ток короткого замыкания соответ­ ствует скорости коррозии сплава в контакте с углеродом при условии, если металлический Zr в системе отсутствует. В присутствии же Zr этот ток определяется скоростью взаимодействия циркония с расплавом (отнесенной к единице поверхности хастеллоя), что может быть использовано для исследования кинетики растворения циркония в расплаве. Установлено, что контакт сплава с углеродом усили­ вает коррозию как в чисто эвтектическом расплаве, так и с добавками LaF3. Присутствие же металлического Zr подавляет коррозион­ ный процесс. КОРОЗІЙНІ ПРОЦЕСИ В РОЗПЛАВІ ФТОРИДІВ ЦИРКОНІЮ І НАТРІЮ. ДОСЛІДЖЕННЯ КОРОТКОЗА­ МКНЕНОГО ЕЛЕМЕНТА C/(ZRF4 – NAF)ЕВТ/ХАСТЕЛЛОЙ О.С. Бакай, С.В. Волков, В.М. Ажажа, О.О. Андрійко, А.О. Омельчук, М.І. Буряк, Б.М. Воронін, С.Д. Лавриненко Вивчена зміна в часі параметрів (струм, напруга, внутрішній опір) короткозамкненого гальванічного елемента хастелой/вуглецевий матеріал в евтектичному розплаві NaF-ZrF4 при 600-650oC. Аналіз цих даних в сукупності з даними поляризаційних вимірювань на окремих електродах при розімкненому колі показав, що струм короткого замикання відповідає швидкості корозії сплаву в контакті з вуглецем при умові, якщо металічний Zr в системі відсутній. В присутності Zr цей струм визначається швидкістю взаємодії цирконію з розплавом (віднесеної до одиниці поверхні хастелою), що може бути використано для дослідження кінетики розчинення цирконію в розплаві. Встановлено, що контакт сплаву з вуглецем посилює корозію як в чисто евтектичному розплаві, так і з добавленням LaF3. Присутність металічного Zr пригнічує корозійний процес. _______________________________________________________________________________ 67 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 62-66.