The corrosion resistance of heatproof nickel alloy in molten fluoride salts

Studies have been made into corrosion and mechanical properties of high-nickel alloys prepared at NSC KIPT on the basis of high-purity metal components. Corrosion tests of the Hastelloy-type alloy in fluoride melts at 650°C revealed formation of no films in the process of corrosion during 700 hours....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2005
Hauptverfasser: Azhazha, V.M., Bakai, A.S., Bobrov, Yu.P., Virich, V.D., Yemlyaninova, T.G., Kapustin, V.L., Kovtun, K.V., Lavrinenko, S.D., Malykhin, D.G., Petel’guzov, I.A., Pylypenko, M.M., Savchenko, V.I., Semyonov, N.A., Solopikhin, A.D., Shirokov, B.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80559
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The corrosion resistance of heatproof nickel alloy in molten fluoride salts / V.M. Azhazha, A.S. Bakai, Yu.P. Bobrov, V.D. Virich, T.G. Yemlyaninova, V.L. Kapustin, K.V. Kovtun, S.D. Lavrinenko, D.G. Malykhin, I.A. Petel’guzov, M.M. Pylypenko, V.I. Savchenko, N.A. Semyonov, A.D. Solopikhin, B.M. Shirokov // Вопросы атомной науки и техники. — 2005. — № 4. — С. 74-81. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80559
record_format dspace
spelling Azhazha, V.M.
Bakai, A.S.
Bobrov, Yu.P.
Virich, V.D.
Yemlyaninova, T.G.
Kapustin, V.L.
Kovtun, K.V.
Lavrinenko, S.D.
Malykhin, D.G.
Petel’guzov, I.A.
Pylypenko, M.M.
Savchenko, V.I.
Semyonov, N.A.
Solopikhin, A.D.
Shirokov, B.M.
2015-04-19T13:34:36Z
2015-04-19T13:34:36Z
2005
The corrosion resistance of heatproof nickel alloy in molten fluoride salts / V.M. Azhazha, A.S. Bakai, Yu.P. Bobrov, V.D. Virich, T.G. Yemlyaninova, V.L. Kapustin, K.V. Kovtun, S.D. Lavrinenko, D.G. Malykhin, I.A. Petel’guzov, M.M. Pylypenko, V.I. Savchenko, N.A. Semyonov, A.D. Solopikhin, B.M. Shirokov // Вопросы атомной науки и техники. — 2005. — № 4. — С. 74-81. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS 81.40-WX; 61.66-DK
https://nasplib.isofts.kiev.ua/handle/123456789/80559
Studies have been made into corrosion and mechanical properties of high-nickel alloys prepared at NSC KIPT on the basis of high-purity metal components. Corrosion tests of the Hastelloy-type alloy in fluoride melts at 650°C revealed formation of no films in the process of corrosion during 700 hours. The corrosion of the alloy under study in molten fluorides is characterized by a weak interaction of melt components with the alloy, by penetration of Zr and Na atoms into the alloy at a depth of 3 to 5 μm over 700 hours, by the absence of oxide films on the surface. The chromium content in the near-surface layer of the alloy decreases to a depth of 10 μm. Corrosion tests cause no essential changes in the mechanical properties of the alloy.
Досліджувалися корозійні і механічні властивості зразків високонікелевих сплавів, які були виготовлені в ННЦ ХФТІ на основі високочистих металевих компонентів. В результаті корозійних випробувань сплаву типу Хастелой в розплаві фторидів при температурі 650°С не знайдено утворення яких-небудь плівок в процесі корозії протягом 700 г. Процес корозії цього сплаву в розплавах фторидів характеризується слабкою взаємодією компонентів суміші із сплавом, проникненням атомів Zr і Na в сплав на глибину до 3...5 мкм за час 700 г, відсутністю оксидних плівок на поверхні. Відбувається зменшення концентрації хрому в при поверхневому шарі сплаву на глибину до 10 мкм. Корозійні випробування не призводять до значної зміни механічних властивостей сплаву.
Исследовались коррозионные и механические свойства образцов высоконикелевых сплавов, которые были изготовлены в ННЦ ХФТИ на основе высокочистых металлических компонентов. В результате коррозионных испытаний сплава типа Хастеллой в расплаве фторидов при температуре 650°С не обнаружено образования каких-либо плёнок в процессе коррозии в течение 700 ч. Процесс коррозии этого сплава в расплавах фторидов характеризуется слабым взаимодействием компонентов смеси со сплавом, проникновением атомов Zr и Na в сплав на глубину до 3…5 мкм за время 700 ч, отсутствием оксидных плёнок на поверхности. Происходит уменьшение концентрации хрома в приповерхностном слое сплава на глубину до 10 мкм. Коррозионные испытания не приводят к значительному изменению механических свойств сплава.
This work was partially supported by the STCU, Project #294.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
The corrosion resistance of heatproof nickel alloy in molten fluoride salts
Корозійна стійкість жароміцного нікелевого сплаву в розплавах фторидних солей
Коррозионная стойкость жаропрочного никелевого сплава в расплавах фторидных солей
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The corrosion resistance of heatproof nickel alloy in molten fluoride salts
spellingShingle The corrosion resistance of heatproof nickel alloy in molten fluoride salts
Azhazha, V.M.
Bakai, A.S.
Bobrov, Yu.P.
Virich, V.D.
Yemlyaninova, T.G.
Kapustin, V.L.
Kovtun, K.V.
Lavrinenko, S.D.
Malykhin, D.G.
Petel’guzov, I.A.
Pylypenko, M.M.
Savchenko, V.I.
Semyonov, N.A.
Solopikhin, A.D.
Shirokov, B.M.
title_short The corrosion resistance of heatproof nickel alloy in molten fluoride salts
title_full The corrosion resistance of heatproof nickel alloy in molten fluoride salts
title_fullStr The corrosion resistance of heatproof nickel alloy in molten fluoride salts
title_full_unstemmed The corrosion resistance of heatproof nickel alloy in molten fluoride salts
title_sort corrosion resistance of heatproof nickel alloy in molten fluoride salts
author Azhazha, V.M.
Bakai, A.S.
Bobrov, Yu.P.
Virich, V.D.
Yemlyaninova, T.G.
Kapustin, V.L.
Kovtun, K.V.
Lavrinenko, S.D.
Malykhin, D.G.
Petel’guzov, I.A.
Pylypenko, M.M.
Savchenko, V.I.
Semyonov, N.A.
Solopikhin, A.D.
Shirokov, B.M.
author_facet Azhazha, V.M.
Bakai, A.S.
Bobrov, Yu.P.
Virich, V.D.
Yemlyaninova, T.G.
Kapustin, V.L.
Kovtun, K.V.
Lavrinenko, S.D.
Malykhin, D.G.
Petel’guzov, I.A.
Pylypenko, M.M.
Savchenko, V.I.
Semyonov, N.A.
Solopikhin, A.D.
Shirokov, B.M.
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Корозійна стійкість жароміцного нікелевого сплаву в розплавах фторидних солей
Коррозионная стойкость жаропрочного никелевого сплава в расплавах фторидных солей
description Studies have been made into corrosion and mechanical properties of high-nickel alloys prepared at NSC KIPT on the basis of high-purity metal components. Corrosion tests of the Hastelloy-type alloy in fluoride melts at 650°C revealed formation of no films in the process of corrosion during 700 hours. The corrosion of the alloy under study in molten fluorides is characterized by a weak interaction of melt components with the alloy, by penetration of Zr and Na atoms into the alloy at a depth of 3 to 5 μm over 700 hours, by the absence of oxide films on the surface. The chromium content in the near-surface layer of the alloy decreases to a depth of 10 μm. Corrosion tests cause no essential changes in the mechanical properties of the alloy. Досліджувалися корозійні і механічні властивості зразків високонікелевих сплавів, які були виготовлені в ННЦ ХФТІ на основі високочистих металевих компонентів. В результаті корозійних випробувань сплаву типу Хастелой в розплаві фторидів при температурі 650°С не знайдено утворення яких-небудь плівок в процесі корозії протягом 700 г. Процес корозії цього сплаву в розплавах фторидів характеризується слабкою взаємодією компонентів суміші із сплавом, проникненням атомів Zr і Na в сплав на глибину до 3...5 мкм за час 700 г, відсутністю оксидних плівок на поверхні. Відбувається зменшення концентрації хрому в при поверхневому шарі сплаву на глибину до 10 мкм. Корозійні випробування не призводять до значної зміни механічних властивостей сплаву. Исследовались коррозионные и механические свойства образцов высоконикелевых сплавов, которые были изготовлены в ННЦ ХФТИ на основе высокочистых металлических компонентов. В результате коррозионных испытаний сплава типа Хастеллой в расплаве фторидов при температуре 650°С не обнаружено образования каких-либо плёнок в процессе коррозии в течение 700 ч. Процесс коррозии этого сплава в расплавах фторидов характеризуется слабым взаимодействием компонентов смеси со сплавом, проникновением атомов Zr и Na в сплав на глубину до 3…5 мкм за время 700 ч, отсутствием оксидных плёнок на поверхности. Происходит уменьшение концентрации хрома в приповерхностном слое сплава на глубину до 10 мкм. Коррозионные испытания не приводят к значительному изменению механических свойств сплава.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80559
citation_txt The corrosion resistance of heatproof nickel alloy in molten fluoride salts / V.M. Azhazha, A.S. Bakai, Yu.P. Bobrov, V.D. Virich, T.G. Yemlyaninova, V.L. Kapustin, K.V. Kovtun, S.D. Lavrinenko, D.G. Malykhin, I.A. Petel’guzov, M.M. Pylypenko, V.I. Savchenko, N.A. Semyonov, A.D. Solopikhin, B.M. Shirokov // Вопросы атомной науки и техники. — 2005. — № 4. — С. 74-81. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT azhazhavm thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT bakaias thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT bobrovyup thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT virichvd thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT yemlyaninovatg thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT kapustinvl thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT kovtunkv thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT lavrinenkosd thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT malykhindg thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT petelguzovia thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT pylypenkomm thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT savchenkovi thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT semyonovna thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT solopikhinad thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT shirokovbm thecorrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT azhazhavm korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT bakaias korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT bobrovyup korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT virichvd korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT yemlyaninovatg korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT kapustinvl korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT kovtunkv korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT lavrinenkosd korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT malykhindg korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT petelguzovia korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT pylypenkomm korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT savchenkovi korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT semyonovna korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT solopikhinad korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT shirokovbm korozíinastíikístʹžaromícnogoníkelevogosplavuvrozplavahftoridnihsolei
AT azhazhavm korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT bakaias korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT bobrovyup korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT virichvd korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT yemlyaninovatg korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT kapustinvl korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT kovtunkv korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT lavrinenkosd korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT malykhindg korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT petelguzovia korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT pylypenkomm korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT savchenkovi korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT semyonovna korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT solopikhinad korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT shirokovbm korrozionnaâstoikostʹžaropročnogonikelevogosplavavrasplavahftoridnyhsolei
AT azhazhavm corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT bakaias corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT bobrovyup corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT virichvd corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT yemlyaninovatg corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT kapustinvl corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT kovtunkv corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT lavrinenkosd corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT malykhindg corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT petelguzovia corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT pylypenkomm corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT savchenkovi corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT semyonovna corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT solopikhinad corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
AT shirokovbm corrosionresistanceofheatproofnickelalloyinmoltenfluoridesalts
first_indexed 2025-11-25T11:47:01Z
last_indexed 2025-11-25T11:47:01Z
_version_ 1850511657338404864
fulltext PACS 81.40-WX; 61.66-DK THE CORROSION RESISTANCE OF HEATPROOF NICKEL ALLOY IN MOLTEN FLUORIDE SALTS V.M. Azhazha, A.S. Bakai, Yu.P. Bobrov, V.D. Virich, T.G. Yemlyaninova, V.L. Kapustin, K.V. Kovtun, S.D. Lavrinenko, D.G. Malykhin, I.A. Petel’guzov, M.M. Pylypenko, V.I. Savchenko, N.A. Semyonov, A.D. Solopikhin, B.M. Shirokov National Science Center “Kharkov Institute of Physics and Technology”, 1 Akademicheskaya St., 61108 Kharkov, Ukraine E-mail: azhazha@kipt.kharkov.ua Studies have been made into corrosion and mechanical properties of high-nickel alloys prepared at NSC KIPT on the basis of high-purity metal components. Corrosion tests of the Hastelloy-type alloy in fluoride melts at 650°C revealed formation of no films in the process of corrosion during 700 hours. The corrosion of the alloy under study in molten fluorides is characterized by a weak interaction of melt components with the alloy, by penetration of Zr and Na atoms into the alloy at a depth of 3 to 5 μm over 700 hours, by the absence of oxide films on the surface. The chromium content in the near-surface layer of the alloy decreases to a depth of 10 μm. Corrosion tests cause no es­ sential changes in the mechanical properties of the alloy. 1. INTRODUCTION The high-temperature homogeneous molten salt cold graphite reactor (MSGR) that was under development in the USA and the USSR [1-3] is one of the safe types of nuclear reactors. Aside from power generation, the reactor of this type is capable of realizing afterburning and transmutation of spent nuclear fuel. In the MSGR, the part of a coolant is played by molten fluoride salts of lithium, sodium, zirconium with addition of a fissile material, e.g., uranium or plutonium fluoride. Heat-resistant and corrosion-resistant high- nickel alloys are used as structural materials for the re­ actor of this type. Among these alloys are the Hastelloy N-type alloy and its Russian analog KhN80MT. Using high-purity components as the base, Hastelloy N-type alloys were smelted at the NSC KIPT; samples from these alloys were prepared for performing corro­ sion tests. The aim of the present work has been to conduct corrosion tests of the samples in molten fluoride salts of zirconium and sodium. 2. MATERIALS AND INVESTIGATION TECHNIQUES The studies were performed on the samples of a high-nickel alloy produced at NSC KIPT with the use of high-purity metal components as the base. The alloy had the following composition: Ni – base, Mo – 11.7, Cr –6.7, Ti – 0.47, Al – 0.83, Fe – 1.5, Mn – 0.5, Si – 0.15 wt.%. The high-purity initial components with a low content of interstitial impurities, which were used for preparing the alloy, were subjected to prerefining by physical methods. The metal purification was performed by different methods. For refining of nickel, molybde­ num, niobium, titanium and iron, we have used the method of vacuum electron-beam melting (EBM) at the facility described in [4]. High-vacuum annealing was used for refining of chromium and aluminum. Man­ ganese was refined by the vacuum distillation technique. For alloy smelting, we have used the method of in­ duction melting of prepared stock in the argon atmo­ sphere of the “Kristall-603” facility. At the end of the process, a low-velocity casting into a water-cooled cop­ per mold was performed. The resulting ingots were cut with an electrospark discharge machine to have a pris­ matic shape; then they were heated up to 900°C and were rolled to a thickness of 1 and 0.3 mm with inter­ mediate annealings. The rolled strips underwent the fol­ lowing heat treatment: 1 – homogenizing annealing at 1100°C, a 1-hour exposure interval in air followed by water quenching (after quenching the plate surface was subjected to etching); 2 – after annealing the plates were subjected to aging at 675°C during 5 hours in the argon atmosphere [5, 6]. The samples for corrosion tests pre­ sented the 27x23x1 mm plates cut out of the rolled strip by means of the electrospark discharge machine. Before the tests the sample surface was ground using the sand­ paper with a grain size of 20 μm, the edges were blunt­ ed. Corrosion tests in air. Comparative corrosion tests of both the given alloy and the reactor stainless steel EhI-847 were conducted in air environment at tempera­ tures of 650 and 750 C in the muffle furnace. The sam­ ples were placed in alundum boats and were periodical­ ly taken out for weighing on the microbalance VLR-20. Tests in molten salts. The molten-salt (50ZrF4+50NaF(mol.%)) test technique consisted in de­ termining the degree of interaction between hastelloy samples and molten salts with a long-term isothermal holding in pyrocarbon ampoules. The tests were per­ formed in the inert gas + high-purity argon environ­ ment. The rate of interaction between the material and the molten salts was estimated from mass variations de­ termined by the analytical microbalance to an accuracy of 0.05 mg [7]. Metallographic methods and secondary- ion mass-spectrometry technique were used to investi­ _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 74-81. 74 mailto:azhazha@kipt.kharkov.ua gate the sample surfaces. Mechanical properties of the samples were also investigated. The device for tests in the salt composition includes the pressurized chamber equipped with a system pumping to a vacuum of 1ּ10-2 mm Hg, the device for filling the chamber volume with argon from a vessel and the manometers for pressure measurements (see Fig. 1). Fig. 1. Schematic of the setup for corrosion tests of Hastelloy-type alloy samples in molten fluoride salts in graphite ampoules: 1 – pyrocarbon ampoules with molten salts; 2 – sample mount, 3 – safety valve; 4 - vacuum chamber body; 5 – heating furnace, 6 – thermocouple, 7 – manometer, 8 – vacuum pumping and gas inlet system, 9 – frame The container with pyrocarbon ampoules and sam­ ples was placed into the furnace TG-1 with a heater. The furnace was equipped with the instrumentation to maintain the assigned temperature, to measure and reg­ ister its values. Before the experiment, the sample sur­ face was degreased in gasohol, and after drying, the samples were weighed on the analytical balance. Then the samples were put into pyrocarbon ampoules, which were filled in a special chamber with a molten salt mix­ ture at a temperature of ~550°C in the argon medium. The cross section of the ampoule filled with a solidified melt of fluorides is given in Fig. 2. Fig. 2. The ampoule filled with solidified molten fluo­ rides is section:1 – solidified molten salts; 2 – pyrocar­ bon ampoule; 3 – alloy sample The filled ampoules were closed by threaded covers. As the ampoules were put into the working chamber, the latter was twice pumped out to vacuum and was “washed” by argon. Then, in the argon atmosphere (1.2 MPa), the samples were heated and held at a tem­ perature of 650°C in the molten salts during 100, 200, 500 and 700 hours. On opening the ampoules, the alloy samples were taken out, the salt remains were removed from their surface, the samples were weighed, their mi­ crostructure and mechanical properties were investigat­ ed; the X-ray diffraction analysis was also performed and variations in the chemical composition in the sam­ ple depth were studied. The microstructure of samples was examined with the metallography microscope MMR-4. The chemical composition variations in the depth of the sample were investigated by the secondary-ion mass-spectrometry method using the MS-7201 device. The X-ray diffraction studies of alloys were made at the DRON4-07 facility with the scintillation counter in the radiation of CuKα and CopKα.. The reflections were obtained using the Bragg-Brentano optical scheme. The morphology of sample surface after corrosion was examined in the electron-scan microscope REMMA-200. The chemical composition of the salt that underwent corrosion tests was analyzed by the mass-spectrometer EhMAL-2. The tensile testing machine of type 1246R- 2/2600 was used to investigate the mechanical properties of alloys in the temperature range from 20 to 650˚C. 3. RESULTS AND DISCUSSION The kinetic curves showing the increase in weight of high-nickel alloy and stainless steel samples versus time at oxidation in air during 660 h are shown in Fig. 3. It can be seen that the process of corrosion of the Hastel­ loy-type alloy at 650˚C has a damped character, and this gives evidence for the protective mechanisms of the oxi­ dation process. The rate of alloy oxidation is rather low. If it is assumed that the protective oxide film consists of NiO and Cr2O3 in the 50:50% ratio, then its thickness estimated from the sample increase in weight during 660 h will make only 1.74 μm. No delamination or flak­ ing off of oxide films was observed. The rise in the oxi­ dation temperature up to 750˚C for the Hastelloy-type alloy also gives moderate oxidation rates; the curves of the oxidation process show the damped character. The thickness of oxide films formed during 700 h at 750˚C is calculated to be approximately 6 μm. The oxidation rate of stainless steel EI-847 is appre­ ciably higher than that of the Hastelloy-type alloy at the two test temperatures. The calculations of the thickness of oxide films on steel at 650˚C show it to be 7.7 μm af­ ter 660 hours of tests, while at 750˚C the 7 to 8 μm film thickness is attained as early as in 100 h. So, our Hastel­ loy-type alloy [5] is a highly corrosion-resistant material that may be used in different fields of engineering. The variation in the sample mass with time of hold in the molten salts is shown in Fig. 4. It is seen that this variation has an irregular character: at first, we observe an enhanced increase in weight for up to 250 hours of tests, and then it gradually falls off at subsequent tests during 700 hours. Evidently, this behavior reflects the complicated kinetics of interaction between fluoride salts and the Hastelloy-type alloy. Figure 5 shows the appearance of the samples (upper row, 1.3 x magnifica­ tion) and morphological peculiarities of the sample sur­ face after corrosion tests in the salt mixture during 100…700 hours (500 x magnification). The optical mi­ croscopy examination of the surface has revealed the is­ lands of loose formations that may be the result of inter­ action between the molten salts and the alloy. These for­ mations could not be removed by vacuum annealing at 650°C. Their presence is probably one of the reasons that accounts for the increase in weight. Fig. 3. Comparison between increases in weight for Hastelloy-type alloy and stainless steel EI 847 at oxidation in air 0 0,02 0,04 0,06 0,08 0 200 400 600 800 Test duration, h In cr ea se in w ei gh t, m g/ cm 2 Fig. 4. Time dependence of the increase in weight for the Hastelloy-type alloy samples held in the salt melt at 650°C а b 100 h 200 h 500 h 700 h Fig. 5. The appearance of samples and morphological peculiarities of the surface after corrosion tests in the salt melt during 100 to 700 hours: a – appearance of samples (1.3 x magnification); b - morphological pecu­ liarities of sample surfaces (500 x magnification) Figure 6 shows the microstructure of sample edges after corrosion tests during 100 and 700 hours in the plane perpendicular to rolling. No noticeable signs of intercrystalline corrosion were observed on the samples. The average grain size in the alloy samples is dependent on the time of staying in the salt melt and is found to be 11, 12.6, 14 and 21 μ after 100, 200, 500 and 700 hours of corrosion tests, respectively. Figure 7 shows the mi­ crostructure of samples after corrosion tests in molten salts at 650°C during 100, 200, 500 and 700 hours. The metallographic section surface lies in the plane of rolling. The mechanical properties of samples after the cor­ rosion tests are presented in Table 1. It is obvious that they remain practically unchanged with increasing time of holding in the molten salts. Fig. 6. Microstructure of Hastelloy-type alloy samples after corrosion tests at 650°C during 100 and 700 hours. (380 x magnification) 100 hours 700 hours 100 hours 200 hours 500 hours 700 hours Fig. 7. Microstructure of samples after corrosion tests in molten salts at 650˚C during 100, 200, 500 and 700 hours. The scale interval is 10 μm Table 1 Data from mechanical tests (T = 25, 450 and 650°C) of Hastelloy-type alloy samples subjected to corrosion at 650°C during 100, 200, 500 and 700 hours Test duration, h Тtest, °С σВ, МPа σ0,2, МPа δ, % Initials 100 200 500 700 25 930 430 60 1100 840 41 1080 810 45 1080 890 43 1070 875 43 Initials 100 200 500 700 450 710 314 62 800 400 50 800 450 50 820 450 50 800 460 50 Initials 100 200 500 700 650 397 288 14 502 420 8,0 510 435 8,7 490 420 10,0 510 440 9,0 The secondary-ion mass-spectrometry method was used to investigate the surface composition of the initial alloy sample and the element distribution in the depth of the sample after corrosion tests. A typical spectrum of secondary ions is shown in Fig. 8, where it is seen that the spectrum has all the elements (including isotopes) entering into the alloy composition. To perform quanti­ tative analysis, we have normalized the peak amplitudes of individual elements in conformity with the chemical analysis data. This method enables one to perform the layer-by-layer analysis of the chemical composition of the alloy, to determine variations in the element concen­ tration versus the thickness of the layer taken off the al­ loy surface. Figure 9 shows the spectrum of secondary ions from the sample that underwent corrosion tests in the salt melt at 650°C during 100 hours. The main difference between the two spectra (see Figs. 8 and 9) is that the second spectrum exhibits a large peak of sodium of mass 23, and also peaks of concomitant masses 39 and 40 (NaO, NaOH), which are proportional to the peak value of sodium; and the peaks of masses 90, 91, 92, 94 and 96 associated with zirconium isotopes and of con­ comitant masses, e.g., 106 (corresponds to 90Zr16O). Fig. 8. Typical spectrum of secondary ions from the ini­ tial Hastelloy-type alloy sample Fig. 9. Typical spectrum of secondary ions from the ini­ tial Hastelloy-type alloy sample after staying in the melt of sodium and zirconium fluorides at 650°C during 100 hours Since they partially overlap with the peaks of molybdenum isotopes, the 90Zr isotope was taken as the basis of measurements (the percentage of this isotope makes 51.46%). Note also the presence of an insignifi­ cant peak of fluorine (mass 19) in the second spectrum. The peaks corresponding to the fluorides NaF, ZrF4 were not observed. The samples that underwent corro­ sion tests were studied to determine the distribution of the main constituents of the Hastelloy-type alloy: nickel (masses 60 and 58), molybdenum (main isotope of mass 98), chromium (main isotope of mass 52), titanium (main isotope of mass 48), aluminum of mass 27. It is obvious that after corrosion tests the salt be­ comes enriched with practically all metals entering into the alloy composition. Figures 10 and 11 show the dis­ tributions of titanium and chromium concentrations in the depth of the sample, determined by the secondary- ion emission technique. It can be seen from Fig. 10 that titanium is not practically “washed out” of the sample surface; on the contrary, its concentration increases in the near-surface layer (3 to 10 μm). It is the chromium concentration that is most strongly affected. As it is ob­ vious form Fig. 11, after corrosion tests chromium is washed out from the sample surface to a depth of ~ 10 μm). 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0 2 4 6 8 10 depth, mcm co nc en tr at io n, m as .% Fig. 10. Titanium concentration variation in the depth of the Hastelloy-type alloy sample after corrosion tests in the molten salts at 650°C during 500 hours. The dashed line shows the initial titanium concentration in the alloy. Separate measurements (shown by squares) are connected by lines for better visualization Fig. 11. Chromium concentration variation in the depth of the Hastelloy-type alloy sample after corrosion tests in molten salts at 650°C over different periods of time. The dashed line shows the initial chromium concentra­ tion in the alloy The distributions of sodium and zirconium in the depth of the sample held in the salt melt over different periods of time are given in Fig. 12. It can be seen that as a result of corrosion in the melt of sodium and zirconium fluorides, the penetration of Cr and Zr inside the alloy occurs to a depth of 5 μm. Chemical analysis of both the initial salt melt and the melt subjected to corrosion tests was performed by the method of laser mass-spectrometry. Table 2 gives the concentrations of titanium, chromium, manganese, iron, nickel and molybdenum in the initial melt of sodi­ um and zirconium fluorides and in the same melt after holding there Hastelloy-type alloy samples at 650°C during 500 hours. These data confirm the results pre­ sented in Figs. 10 and 11. We performed the phase analysis of the Hastelloy- type alloy after corrosion tests in the NaF-ZrF4 environ­ ment at 650°C during 100, 200, 500 and 700 hours. The coolant is based on 7NaF∙6ZrF4. The results of the anal­ ysis are presented in Tables 3 and 4. According to the data of Table 4, the samples that underwent corrosion tests exhibit the phase Ni3Al(Ti) with a cubic lattice. It is accompanied by the presence of other-stoichiometry compounds NiAl and Ni2Al3. The Ni3Mo compounds were also observed. The 100-hour exposure gave rise to weak lines at the bottom of the nickel base line (111), which correspond to nickel-aluminum and nickel-molybdenum com­ pounds: NiAl (2θ = 44.6, d = 2.032 Ǻ) and Ni3Mo (2θ = 42.8, d = 2.113 Ǻ). Beginning with the 200-hour exposure, traces of NiCr appear. Aside from nickel-containing intermetallides, the sample surfaces also show the traces of the coolant with a crystal struc­ ture corresponding to 7NaF∙6ZrF4. The second phases manifest themselves most clearly on the sample subjected to the 500-hour exposure. In this case, the sample shows only the Ni3(Al, Ti) phase. 0 200 400 600 800 1000 1200 0 5 10 depth, mcm c on ce nt ra tio n, a rb .u n. 90-Zr(500) 90-Zr(700) 90Zr200) 90Zr(100) 0 500 1000 1500 2000 0 5 10 depth, mcm co nc en tr at io n, a rb .u n. 23- Na(700) 23 - Na(500) 23Na(20 0) a b Fig. 12. Element distribution in the depth of the sample after different time periods of staying in the salt melt: a – zirconium; b – sodium Table 2 Variations in the content of metal impurities in molten salts after corrosion tests at 650°C for 500 hours Melt Impurity content, wt. % Ti Cr Mn Fe Ni Mo Initial <0,0005 0,0039 <0,0005 0,021 0,0031 <0,004 After corrosion 0,007 0,15 0,01 0,21 0,05 0,015 Table 3 Conditional numeration of phases given in Table 4 Phase No Phase 1 2 3 4 5 6 Ni3Al(Ti) NiAl Ni2Al3 Ni3Mo NiCr 7NaF⋅6ZrF4 Table 4 Phase analysis data for alloy A after corrosion tests at 650°C during 100…700 hours d(Е) Phase No (see Table 3) Line intensity (%)1 100 h 200 h 500 h 700 h 3.66 3.175 3.10 2.856 2.549 2.33…2.36 2.222 ≤ 2.112 ≥ 2.032 1.953 1.914 1.888 ≤ 1.842 ≥ 1.822 1.616 1(3) 6 6 2,3,(6) 1 5 4 4 2,3,5 4 6 5 1 1 1 1.5 1.5 – 1.0 1.0 – 0.5 ≥ 3.0 ≥ 4.0 0.5 – – – ≥ 1.5 1.0 – 2.5 – 1.5 1.0 1.0 5.0 ≥ 5.0 ≥ 5.0 – – – – ≥ 4.0 – – 1.0 3.0 – 2.5 0.5 – ≥ 5.0 ? 0.5 0.5 2.5 – ≥ 2.0 1.5 – 2.0 – 1.0 1.0 6.0 – ≥ 4.0 ≥ 3.5 1.0 – – ≥ 1.0 – – Presence of phases No 1–4, 6 1–6 1, 4–6 1–5, (6) 1The nickel-base line (111) intensity is taken for 100%. 2 Lines at the bottom of lines (111) and (200) of the nickel base. 4. CONCLUSIONS 1. Kinetics of Hastelloy-type alloy oxidation in air at temperatures of 650 and 750°C has been in­ vestigated. It is found that at oxidation in air the alloy under study is distinguished for its high corrosion resistance superior to the corrosion re­ sistance of steel EI-847. A protective oxide film, up to 1.5 μ in thickness, is formed on the alloy at a temperature of 650°C for 660 hours. 2. The corrosion tests of the Hastelloy-type alloy in the melt of fluorides at 650°C have not re­ vealed any formation of films during a 700-hour corrosion. 3. The process of corrosion of the Hastelloy-type alloy in molten zirconium and sodium fluorides is characterized by weak interaction of melt components with the alloy, by penetration of Zr and Na atoms into the alloy to a depth of 3 … 5 μm over a period of 700 hours, by the absence of oxide films on the surface. A decrease of chromium concentration in the near-surface lay­ er of the alloy to a depth of ~ 10 μm occurs. 4. The present corrosion tests have caused no es­ sential changes in the mechanical properties of the alloy. 5. The samples that underwent corrosion tests have exhibited the Ni3Al(Ti) phase with a cubic lat­ tice. Along with this phase, other-stoichiometry compounds NiAl and Ni2Al3 were present. The Ni3Mo compounds and the traces of the NiCr phase were also observed. This work was partially supported by the STCU, Project #294. REFERENCES 1.V.L. Blinkin, V.M. Novikov. Molten-salt nuclear re­ actors (in Russian). Moscow: “Atomizdat publ.” 1978, 112 p. 2.V.M. Novikov, V.V. Ignatyev, V.I. Fedulov, V.N. Cherednikov. Molten-salt NEF: prospects and problems (in Russian). Moscow: “Ehnergoizdat”, 1990, 192 p. 3.U.R. Grims. Problems of materials choice for molten-salt reactors (Russian translation). Moscow: “Atomizdat publ.” 1966, p. 69–98. 4.V.M. Azhazha, Yu.P. Bobrov, V.D. Virich, et al. Re­ finement of nickel by electron-beam melting (in Rus­ sian) //Kharkov University Bulletin. Ser. phys.: “Nuclei, particles, fields”. 2003, N601, is. 2(22), p. 118–122. 5.V.M. Azhazha, Yu.P. Bobrov, P.N. V’yugov, et al., Development of the alloy for the fuel loop of molten- salt reactors (in Ukrainian) //Kharkov University Bul­ letin. Ser. phys.: “Nuclei, particles, fields”. 2004, is. 1(23), p. 87–94. 6.V. Azhazha, A. Bakai, S. Lavrinenko, Yu. Bobrov et al., Alloys for molten-salt reactors (in Ukrainian) //Pro­ ceedings of the XVI International conference on physics of radiation phenomena and radiation materials sci­ ence. 6 – 11 September, 2004, Alushta, Crimea, NSC KIPT, p. 271–272. 7.V. Azhazha, A. Bakai, Yu. Bobrov, S. Lavrinenko, I. Petel’guzov, V. Savchenko. Investigation of corrosion resistance and mechanical properties of high-tempera­ ture heat-resistant nickel alloy (in Russian) //Fracture mechanics of materials and structural strength. Ed. by V.V. Panasyuk. L’viv, G.V. Karpenko Institute for Physics and Mechanics, National Academy of Sciences in Ukraine, 2004, p. 659–664. КОРРОЗИОННАЯ СТОЙКОСТЬ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА В РАСПЛАВАХ ФТОРИДНЫХ СОЛЕЙ В.М. Ажажа, А.С. Бакай, Ю.П.Бобров, В.Д. Вирич, Т.Г. Емлянинова, В.Л. Капустин, К.В. Ковтун, С.Д. Лавриненко, Д.Г. Малыхин, И.А. Петельгузов, Н.Н. Пилипенко, В.И. Савченко, Н.А. Семенов, А.Д. Солопихин, Б.М. Широков Исследовались коррозионные и механические свойства образцов высоконикелевых сплавов, которые были изготов­ лены в ННЦ ХФТИ на основе высокочистых металлических компонентов. В результате коррозионных испытаний спла­ ва типа Хастеллой в расплаве фторидов при температуре 650°С не обнаружено образования каких-либо плёнок в процес­ се коррозии в течение 700 ч. Процесс коррозии этого сплава в расплавах фторидов характеризуется слабым взаимодей­ ствием компонентов смеси со сплавом, проникновением атомов Zr и Na в сплав на глубину до 3…5 мкм за время 700 ч, отсутствием оксидных плёнок на поверхности. Происходит уменьшение концентрации хрома в приповерхностном слое сплава на глубину до 10 мкм. Коррозионные испытания не приводят к значительному изменению механических свойств сплава. КОРОЗІЙНА СТІЙКІСТЬ ЖАРОМІЦНОГО НІКЕЛЕВОГО СПЛАВУ В РОЗПЛАВАХ ФТОРИДНИХ СОЛЕЙ В.М. Ажажа, О.С. Бакай, Ю.П. Бобров, В.Д. Віріч, Т.Г. Емлянінова, В.Л. Капустін, К.В.Ковтун, С.Д. Лавриненко, Д.Г. Малихін, І.А. Петельгузов, М.М. Пилипенко, В.І. Савченко, М.О. Семенов, А.Д. Солопихін, Б.М. Широков Досліджувалися корозійні і механічні властивості зразків високонікелевих сплавів, які були виготовлені в ННЦ ХФТІ на основі високочистих металевих компонентів. В результаті корозійних випробувань сплаву типу Хастелой в розплаві фторидів при температурі 650°С не знайдено утворення яких-небудь плівок в процесі корозії протягом 700 г. Процес корозії цього сплаву в розплавах фторидів характеризується слабкою взаємодією компонентів суміші із сплавом, проникненням атомів Zr і Na в сплав на глибину до 3...5 мкм за час 700 г, відсутністю оксидних плівок на поверхні. Від­ бувається зменшення концентрації хрому в при поверхневому шарі сплаву на глибину до 10 мкм. Корозійні випробуван­ ня не призводять до значної зміни механічних властивостей сплаву.