Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture

The paper presents the results of investigations of the interaction of rare-earth fluorides with metallic sodium and zirconium in a molten sodium fluoride–zirconium fluoride mixture. The investigations have been carried out by differential thermal analysis (DTA), X-ray phase analysis (XPA), IR spect...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2005
Автори: Savchuk, R.M., Omelchuk, A.O., Kompanichenko, N.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/80567
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture / R.M. Savchuk, A.O. Omelchuk, N.M. Kompanichenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 120-125. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80567
record_format dspace
spelling Savchuk, R.M.
Omelchuk, A.O.
Kompanichenko, N.M.
2015-04-19T14:23:05Z
2015-04-19T14:23:05Z
2005
Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture / R.M. Savchuk, A.O. Omelchuk, N.M. Kompanichenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 120-125. — Бібліогр.: 16 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/80567
The paper presents the results of investigations of the interaction of rare-earth fluorides with metallic sodium and zirconium in a molten sodium fluoride–zirconium fluoride mixture. The investigations have been carried out by differential thermal analysis (DTA), X-ray phase analysis (XPA), IR spectroscopy, and chemical analysis. It has been shown that metallic sodium and zirconium reduce rare-earth fluoride in the temperature range were the constituents of reaction mixture are in solid phase to form compounds of zirconium in lower oxidation states and rare-earth metals. The dependence of the temperature at the commencement of exchange reactions on the chemical nature of rareearth halide has been established: increase in the melting point of rare-earth fluoride leads to a rise of initial interaction temperature. The degree of reduction of rare-earth fluorides by reducing metals depends on the ratio of the constituents of the original reaction mixture.
Приведені результати досліджень взаємодії фторидів рідкісноземельних елементів (РЗЕ) з металічним натрієм та цирконієм у розплавленій суміші фторидів натрію та цирконію. Дослідження виконані методами диференційно-термічного (ДТА), рентгенофазового (РФА), ІЧ-спектроскопії та хімічного аналізів. Показано, що металічний натрій та цирконій відновлюють фториди РЗЕ в температурному інтервалі, коли складові компоненти реакційних сумішей перебувають в твердій фазі, з утворенням сполук цирконію нижчих ступенів окислення та рідкісноземельних металів. Виявлена залежність температури початку реакцій обміну від хімічної природи галогеніду РЗЕ: зростання температури плавлення фториду РЗЕ призводить до підвищення температури початку взаємодії. Ступінь відновлення фторидів РЗЕ металами- відновниками залежить від співвідношення компонентів у вихідній реакційній суміші.
Приведены результаты исследований взаимодействия фторидов редкоземельных элементов (РЗЭ) с металлическим натрием и цирконием в расплавленной смеси фторидов натрия и циркония. Исследования выполнены методами диференциально-термического (ДТА), рентгенофазового (РФА), ИК-спектроскопии и химического анализов. Показано, что металлический натрий и цирконий восстанавливают фториды РЗЭ в температурном интервале, когда составные компоненты реакционных смесей находятся в твердом состоянии, с образованием соединений циркония низших степеней окисления и редкоземельных металлов. Установлена прямолинейная зависимость температуры начала реакций обмена от химической природы галогенида РЗЭ: увеличение температуры плавления фторида РЗЭ приводит к повышению температуры начала взаимодействия. Степень восстановления фторидов РЗЭ металлами-восстановителями зависит от соотношения компонентов в исходной реакционной смеси.
The work was supported by STCU Project #294.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
Взаимодействие фторидов редкоземельных элементов с металлами в расплавленной смеси фторидов натрия и циркония
Взаємодія фторидів рідкісноземельних елементів з металами в розплавленій суміші фторидів натрію та цирконію
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
spellingShingle Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
Savchuk, R.M.
Omelchuk, A.O.
Kompanichenko, N.M.
title_short Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
title_full Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
title_fullStr Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
title_full_unstemmed Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
title_sort interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture
author Savchuk, R.M.
Omelchuk, A.O.
Kompanichenko, N.M.
author_facet Savchuk, R.M.
Omelchuk, A.O.
Kompanichenko, N.M.
publishDate 2005
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Взаимодействие фторидов редкоземельных элементов с металлами в расплавленной смеси фторидов натрия и циркония
Взаємодія фторидів рідкісноземельних елементів з металами в розплавленій суміші фторидів натрію та цирконію
description The paper presents the results of investigations of the interaction of rare-earth fluorides with metallic sodium and zirconium in a molten sodium fluoride–zirconium fluoride mixture. The investigations have been carried out by differential thermal analysis (DTA), X-ray phase analysis (XPA), IR spectroscopy, and chemical analysis. It has been shown that metallic sodium and zirconium reduce rare-earth fluoride in the temperature range were the constituents of reaction mixture are in solid phase to form compounds of zirconium in lower oxidation states and rare-earth metals. The dependence of the temperature at the commencement of exchange reactions on the chemical nature of rareearth halide has been established: increase in the melting point of rare-earth fluoride leads to a rise of initial interaction temperature. The degree of reduction of rare-earth fluorides by reducing metals depends on the ratio of the constituents of the original reaction mixture. Приведені результати досліджень взаємодії фторидів рідкісноземельних елементів (РЗЕ) з металічним натрієм та цирконієм у розплавленій суміші фторидів натрію та цирконію. Дослідження виконані методами диференційно-термічного (ДТА), рентгенофазового (РФА), ІЧ-спектроскопії та хімічного аналізів. Показано, що металічний натрій та цирконій відновлюють фториди РЗЕ в температурному інтервалі, коли складові компоненти реакційних сумішей перебувають в твердій фазі, з утворенням сполук цирконію нижчих ступенів окислення та рідкісноземельних металів. Виявлена залежність температури початку реакцій обміну від хімічної природи галогеніду РЗЕ: зростання температури плавлення фториду РЗЕ призводить до підвищення температури початку взаємодії. Ступінь відновлення фторидів РЗЕ металами- відновниками залежить від співвідношення компонентів у вихідній реакційній суміші. Приведены результаты исследований взаимодействия фторидов редкоземельных элементов (РЗЭ) с металлическим натрием и цирконием в расплавленной смеси фторидов натрия и циркония. Исследования выполнены методами диференциально-термического (ДТА), рентгенофазового (РФА), ИК-спектроскопии и химического анализов. Показано, что металлический натрий и цирконий восстанавливают фториды РЗЭ в температурном интервале, когда составные компоненты реакционных смесей находятся в твердом состоянии, с образованием соединений циркония низших степеней окисления и редкоземельных металлов. Установлена прямолинейная зависимость температуры начала реакций обмена от химической природы галогенида РЗЭ: увеличение температуры плавления фторида РЗЭ приводит к повышению температуры начала взаимодействия. Степень восстановления фторидов РЗЭ металлами-восстановителями зависит от соотношения компонентов в исходной реакционной смеси.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80567
citation_txt Interaction of rare-earth fluorides with metals in a molten sodium fluoride-zirconium fluoride mixture / R.M. Savchuk, A.O. Omelchuk, N.M. Kompanichenko // Вопросы атомной науки и техники. — 2005. — № 4. — С. 120-125. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT savchukrm interactionofrareearthfluorideswithmetalsinamoltensodiumfluoridezirconiumfluoridemixture
AT omelchukao interactionofrareearthfluorideswithmetalsinamoltensodiumfluoridezirconiumfluoridemixture
AT kompanichenkonm interactionofrareearthfluorideswithmetalsinamoltensodiumfluoridezirconiumfluoridemixture
AT savchukrm vzaimodeistvieftoridovredkozemelʹnyhélementovsmetallamivrasplavlennoismesiftoridovnatriâicirkoniâ
AT omelchukao vzaimodeistvieftoridovredkozemelʹnyhélementovsmetallamivrasplavlennoismesiftoridovnatriâicirkoniâ
AT kompanichenkonm vzaimodeistvieftoridovredkozemelʹnyhélementovsmetallamivrasplavlennoismesiftoridovnatriâicirkoniâ
AT savchukrm vzaêmodíâftoridívrídkísnozemelʹnihelementívzmetalamivrozplavleníisumíšíftoridívnatríûtacirkoníû
AT omelchukao vzaêmodíâftoridívrídkísnozemelʹnihelementívzmetalamivrozplavleníisumíšíftoridívnatríûtacirkoníû
AT kompanichenkonm vzaêmodíâftoridívrídkísnozemelʹnihelementívzmetalamivrozplavleníisumíšíftoridívnatríûtacirkoníû
first_indexed 2025-11-24T08:20:14Z
last_indexed 2025-11-24T08:20:14Z
_version_ 1850843847853080576
fulltext INTERACTION OF RARE-EARTH FLUORIDES WITH METALS IN A MOLTEN SODIUM FLUORIDE–ZIRCONIUM FLUORIDE MIX­ TURE R.M. Savchuk, A.O. Omelchuk, and N.M. Kompanichenko V.I .Vernadkii Institute of General and Inorganic Chemistry Ukrainian National Academy of Sciences Prospect Palladina 32-34, 03680, Kyiv 142, Ukraine e-mail: savchuk@ionc.kar.net The paper presents the results of investigations of the interaction of rare-earth fluorides with metallic sodium and zirconium in a molten sodium fluoride–zirconium fluoride mixture. The investigations have been carried out by dif­ ferential thermal analysis (DTA), X-ray phase analysis (XPA), IR spectroscopy, and chemical analysis. It has been shown that metallic sodium and zirconium reduce rare-earth fluoride in the temperature range were the constituents of reaction mixture are in solid phase to form compounds of zirconium in lower oxidation states and rare-earth met­ als. The dependence of the temperature at the commencement of exchange reactions on the chemical nature of rare- earth halide has been established: increase in the melting point of rare-earth fluoride leads to a rise of initial interac­ tion temperature. The degree of reduction of rare-earth fluorides by reducing metals depends on the ratio of the con­ stituents of the original reaction mixture. The research carried out in recent years showed that one of the promising methods for the destruction of ra­ dioactive wastes accumulated by operating nuclear pow­ er stations and by the production of weapon plutonium is the accelerator-driven transmutation of long-lived nu­ clides, and that a suitable reaction medium is molten salt compositions. According to the existing infrastructure of a nuclear power system, spent fuel is fluorinated to extract uranium [1], zirconium tetrafluoride, which is part of fuel element jackets, forming the basis of fluori­ nation products. If sodium fluoride is added to fluorina­ tion products (ZrF4) in a 1:1 (mol) ratio, the composi­ tion formed, NaF-ZrF4, will conform to the criteria for choosing fuel mixtures for nuclear reactors and will be a good carrier of nuclear transmutation products. In the course of the operation of such reactors, a continuous change of the fuel composition takes place, which is caused by the accumulation of actinide trans­ mutation products and structural material corrosion products. Among them are rare-earth fluorides, isotopes and fluorides of transition, alkaline, alkaline-earth ele­ ments, etc [1-3]. Most of the isotopes formed have a large thermal neutron capture cross-section, which in­ fluences the neutron-energy balance of the reactor. Be­ sides, fission products influence the corrosion resistance of structural materials towards molten-salt fuel compo­ sition. Whereas the nuclear transmutations that are possible to date are exhaustively studied in terms of theoretical physics, the chemistry of molten salt blanket is at the initial stage of investigation. There is no information on the general laws governing chemical interaction in fuel composition, on the effect of nuclear and chemical transformations on structural materials, efficient meth­ ods for the adjustment of the composition of fuel mix­ tures, their utilization, and subsequent storage. In view of this, the investigation of chemical pro­ cesses occurring in melts, which form the basis of fuel mixtures in reactors-transmuters, is topical and is of not only scientific, but also practical interest. This paper presents results of a study of the interac­ tions that take place between nuclear transmutation products (simulative objects: La, Pr, Nd, Gd, Dy, Yb fluorides) and the metals that are part of the fuel ele­ ment jacket, fuel mixture, and structural materials. The investigations have been carried out by differen­ tial thermal analysis (DTA), X-ray phase analysis (XPA), chemical analysis, and IR spectroscopy. A ther­ modynamic evaluation of the interaction of the compo­ nents of a number of systems has been performed. EXPERIMENTAL The DTA was made on a Q-1500 derivatograph in corundum (or alundum) crucibles for DTG investiga­ tions under dry argon since the reducing metals (Zr, Na) and rare-earth fluorides are oxidized by atmospheric oxygen [4, 5]. The heating rate of the samples under in­ vestigation was 5-10 deg/min. Aluminum oxide was used as a standard. For a more reliable protection of samples from air oxidation, they were coated with a molten NaPO3-V2O5 mixture. According to the results of Ref [6], the presence of a protective coating of the com­ position (wt %) NaPO3 (75)–V2O5(25) does not interfere in the identification of thermoeffects which are ob­ served between the constituents of reaction mixtures; moreover, this coating has good protective properties in thermographic investigations. The XPA was made on a DRON-UM diffractometer with CuKα radiation by the powder method. The IR spectra were recorded in a frequency range of 3800… 200 cm-1 by means of a Specord-80M device on pelleted samples with potassium bromide. The concentration of the metals in a lead-sodium alloy was determined by a procedure described earlier [7]. __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 120 mailto:savchuk@ionc.kar.net Analytically pure and extra pure reagents and sub­ limed zirconium tetrafluoride of monoclinic system, which was obtained by dehydration and simultaneous fluorination of ZrF4·xHOH were used for the investiga­ tions [8]. The interaction between rare-earth fluorides and re­ ducing metals was investigated in a previously prepared NaF (51 mol. %)–ZrF4 (49 mol. %) mixture. The rare- earth fluoride content of this mixture was varied from 4 to 20 wt %; the ratio Zr:MF3 (mol %)(M=La, Yb) was varied from 10:1 to 4:1, and the ratio Na:LaF3 was var­ ied from 1:1 to 1:3. The samples were prepared by pro­ cedures described earlier [7, 9]. The heating curves for a NaF (51 mol %)–ZrF4 (49 mol %) mixture exhibit only one thermoeffect at (525 ± 5)°C, which is characteristic of the melting of a eutectic mixture in the NaF-ZrF4 system and is in satisfactory agreement with literature data (Fig. 1) [10]. Fig. 1 Heating curve for the solvent melt NaF (51 mol %)–ZrF4 (49 mol %) It should be noted that alloys of the system NaF- ZrF4 are characterized by supercooling. Indeed the cool­ ing curves for a NaF (51 mol %)–ZrF4 (49 mol %) mix­ ture exhibit an effect of solidification of sodium fluo­ ride-zirconium fluoride melt at 490°C (Fig. 2). Fig. 2. Cooling curve for the solvent melt NaF (51 mol %)–ZrF4 (49 mol %) This phenomenon may be accounted for by the for­ mation of thermodynamically unstable phases and their disordering. The results obtained agree with the data presented in Ref [11], where it was shown that in the NaF-ZrF4 system at a zirconium tetrafluoride concentra­ tion of 40…60 mol %, the heating and cooling curves exhibit only one thermoeffect, independent of interac­ tion time and temperature, the melting temperature be­ ing higher than the crystallization temperature. The compounds that are formed by interaction have close melting points and show polymorphous transformations at 160 and 440°C. A compound of the composition 7NaF·6ZrF4 has been identified by an XPA (Fig. 3). Fig. 3 Diffractogram of the NaF (51 mol %)–ZrF4 (49 mol %) mixture The results of the XPA of a NaF (51 mol %)–ZrF4 (49 mol %) mixture show that a fraction is formed at the top of the melt; the fraction shows a texture, due to long soaking, which is manifested in diffractograms by a group of strong reflections from crystallographic plane with d = 0.5077 nm. At the bottom of the melt is a frac­ tion, whose basis is formed by a phase with fcc lattice (a0 = 0.543 nm.). When sodium was used as a reductant, a lead-sodi­ um melt, synthesized by the electrochemical method, was used to avoid strong interaction between rare-earth fluorides and metallic sodium, which may give rise to difficulties in the interpretation of DTG diagrams. The concentration of the metals in the alloy synthesized was determined by a procedure described earlier [7]. The NaF-ZrF4-LnF3-M systems, where M = Zr, Na, were investigated on samples of 1.5…3.5 g mass. Pounded mixtures were poured into a glassy carbon cru­ cible, which was placed in a hermetically sealed metal­ lic reactor (Fig. 4). The samples were first subjected to vacuum degassing at 200 and 300°C and then heated under dry oxygen-free argon. The temperature in inves­ tigations did not exceed 600…650°C. The rare-earth metal concentration in the salt phase after the occurrence of exchange reaction was deter­ mined by complexometric titration in the presence of eriochrome black T and by gravimetric method by pre­ cipitating the rare-earth metal with oxalic acid [12]. The fluoride ion content of the reaction mixture was deter­ mined by means of a fluorine-selective electrode [13], __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 121 and sodium was determined by flame photometry. It should be noted that the presence of zirconium and lead interferes in the determination of the degree of reduction of rare-earth fluorides in the systems under investiga­ tion, therefore these metals were extracted from the samples under analysis by procedures described earlier [7, 9]. Fig. 4. Principal scheme of a reactor for the investiga­ tion of the reduction of rare-earth fluorides by reducing metals: (1) crucible, (2) sample under investigation, (3) Pt-Rh thermoconple RESULTS AND DISCUSSION A characteristic of the interaction between rare-earth fluorides and reducing metals is free Gibbs energy (ΔG). The exchange reaction between the constituents of the mixtures under investigation may be schematical­ ly represented as follows: 6LnF3 + 7Zr → 2ZrF4 + 6Ln + 5ZrF2; LnF3 + 3Na → Ln + 3NaF, where Ln is rare-earth element. The calculations that have been made on the basis of the data obtained in Ref [14] give ground to consider the interaction between rare-earth fluorides and reducing metals to be possible on the whole since a noticeable decrease in the ΔG val­ ue is observed. Investigation of the NaF-ZrF4-LnF3-Zr system. The reduction of lanthanum and ytterbium fluorides by metallic zirconium in a molten sodium fluoride-zirconi­ um fluoride mixture takes place in a temperature range of 440…580°C, the rate of the exchange reaction de­ pending on the fineness of reducing metal and being the higher, the higher its fineness. The differential heating curves exhibit a number of thermoeffects: endotherms of the melting of NaPO3-V2O5 mixture (365 ± 5°C) and the solvent melt NaF-ZrF4 (520 ± 5°C); an exotherm with an initial interaction temperature of 440-460°C, whose maximum is overlapped by the endotherm of the melting of a eutectic sodium fluoride-zirconium fluoride mixture. These exotherms and the thermoeffects at (460 ± 5)°C and (490 ± 5)°C may be assigned to exchange reactions between metallic zirconium and rare-earth flu­ oride and zirconium tetrafluoride with the formation of compounds of zirconium in lower-oxidation states and rare-earth metal. Since the trend of the DTA and TG curves for the samples under investigation is practically the same, a typical DTA curve for the NaF-ZrF4-LaF3- Zr system is shown in Fig. 5 as an example. Fig. 5. Heating curve for a sample of the system NaF- ZrF4-LaF3-Zr containing 10 wt.% LaF3 The results of an XPA of interaction products showed that zirconium (IV) and (II) compounds: Na2ZrF6, Na7Zr6F31, Na5Zr2F13, ZrF2; complicated com­ pounds comprising rare-earth fluorides and sodium fluo­ ride, and reduced lanthanides are present in the samples under investigation. The unit cell parameters have been calculated for the identified compounds by means of a computer program; they are in satisfactory agreement with those given in publications. It should be noted that the parameters of the compound ZrF2, which crystallizes in orthorhombic system with a = 0.40425 nm, b = 0.49537 nm, c = 0.65801 nm, have some deviations from literature data (a = 0.409 nm, b = 0.491 nm, c = 0.656 nm), which may be due to the different stoichiom­ etry of this compound (Table 1) [15, 16]. A fragment of diffractogram of the interaction prod­ ucts of the system NaF-ZrF4-Zr Experimental data Literature data Sample ZrF2 d A° I/I0, % d A° I/I0, % 4,077 59 4.065 60 3,453 20 3.448 30 3,285 28 3.279 60 2,942 14 2.933 10 2,779 67 2.762 100 1,918 57 1.923 10 1,731 15 1.739 10 1,654 24 1.664 60 1,545 20 1.541 30 1,479 20 1.484 60 1,378 32 1.377 60 1,319 19 1.316 30 IR spectroscopic investigations of NaF-ZrF4 samples showed the absorption bands to correspond to the vibra­ __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 122 tion frequency range of (ZrF4)n groupings (n = 6…8). The most intense absorption band at 490-500 cm-1 re­ lates to Zr-F bridge bond stretching vibrations and that at 580-590 cm-1 to Zr-F nonbridge bond stretching vi­ brations; the medium-intensity bands in the range 270- 290 cm-1 relate to the bond deformation vibrations of fluorozirconate groupings. The presence of Zr-F bridge and nonbridge bonds in spectra indicates the complexes formed to be unsymmetrical. The presence of com­ pounds of zirconium in lower oxidation states in interac­ tion products is also evidenced by IR spectra, which are in satisfactory agreement with literature data (Fig. 6). It should be noted that zirconium difluoride, which was obtained at the stochiometric ratio of the ZrF4 and Zr constituents in a potassium fluoride-lithium fluoride melt (50 mol % KF), turned out to be X-ray amorphous, therefore the authors identified it by IR spectroscopy [16]. Fig. 6. IR spectra of products of interaction between zirconium tetrafluoride and metallic zirconium in the melts KF-LiF (a) [16] and NaF-ZrF4 at the ratio ZrF4 : Zr = 3 : 1 (b) Thus, the interaction in the system NaF-ZrF4-LnF3- Zr (where Ln = La, Yb) may be represented by the fol­ lowing equations: 4LaF3 + 3Zr → 4La + 3ZrF4 (1) Zr + ZrF4 → 2ZrF2 (2) 2LaF3 + 3ZrF2 → 2La + 3ZrF4, (3) i.e. exchange reaction (1) is paralleled by the interaction of metallic zirconium with tetrafluoride to form zirconi­ um difluoride (2), which then also takes part in the re­ duction of rare-earth fluoride to metal (3). Investigation of the system NaF-ZrF4-LnF3-Na. According to the results of thermographic investigations carried out, the interaction of rare-earth trifluoride with lead-sodium alloy is characterized by a broad thermoef­ fect in the temperature range 70…480°C. Endotherms of the melting of intermetallic compounds of sodium and lead of the compositions NaPb3 and Na5Pb2 have been found on heating curves at 320 and 400°C. The in­ teraction between rare-earth fluoride and metallic sodi­ um begins in the solid phase since the beginning of the exotherm on DTA curves is in the temperature range 70…90°C and reaches a maximum at (380 ± 5)°C. The results of an XPA of the interaction products of the system NaF-ZrF4-LaF3-Pb-Na showed that in the samples under investigation there are complicated com­ pounds comprising sodium and zirconium fluorides (Na3ZrF7, Na2ZrF6) and ZrF2-x (1 > x > 0), which is formed by interaction between metallic sodium and zir­ conium tetrafluoride and crystallizes in orthorhombic system, and metallic lanthanum of hexagonal system (Fig. 7). Fig. 7. Diffractogram of interaction products of a sam­ ple of the system NaF-ZrF4-Pb-Na-LaF3 It should be borne in mind that along with the reduc­ tion of rare-earth fluoride, the interaction of reducing metal with zirconium tetrafluoride, which is part of the solvent melt NaF-ZrF4, occurs. This is supported by the results of an investigation of the system NaF-ZrF4-Pb- Na at NaF-ZrF4: Na ratios of 1:1 to 3:1 (mol). The inter­ action between the constituents of mixtures is character­ ized by a broad exotherm with a maximum at (380 ± 5)° C. A number of endotherms of the melting of the inter­ metallic compounds NaPb3 and Na5Pb2 have been found on DTA curves (Fig. 8, curve 1) at (380 ± 5)°C and (400 ± 5)°C. __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 123 Fig. 8. Heating (1) and cooling (2) curves for a sample of the system NaF-ZrF4-Pb-Na As a result of the investigations carried out it has been found that metallic sodium reduces zirconium tetrafluoride in the NaF-ZrF4 mixture to lower oxidation states in the temperature range 70…500°C and increases the melting point of the solvent melt to 730°C. The character of the interaction of the components of the systems under investigation in the case of cooling differs greatly from that considered above. The DTA curves exhibit in the temperature range 700…730°C only a thermoeffect which corresponds to the endotherm of the melting of sodium fluoride-zirconium fluoride mixture (Fig. 8, curve 2). The following compounds have been identified by XPA among the interaction products of the NaF-ZrF4- Pb-Na system: ZrF2, Na5Zr2F13, Na3ZrF7, Na2ZrF6. The considerable increase in the melting point of sodium flu­ oride - zirconium fluoride mixture (710°C) may be at­ tributed to the formation at the peritectic point of the compounds 5NaF·2ZrF4, which has a higher melting point as compared with the main compound 7NaF6ZrF4 (520°C) of the original mixture. The results of investigation of the interaction of rare- earth fluoride with lead-sodium alloy showed that the law governing reduction established manifests itself in the case of change of the reducing metal. That is the in­ teraction of metallic sodium with rare-earth trifluoride and with the zirconium tetrafluoride of the solvent melt takes place at the same time to form compounds of zir­ conium in lower oxidation states and a rare-earth metal. Thus, as a result of the research carried out, it has been found that the interaction of zirconium and sodium with rare-earth fluorides begins in the temperature range where the constituents of reaction mixtures are in the solid state. Zirconium (IV) and (II) compounds: Na2ZrF6, Na5Zr2F13, ZrF2; complicated compounds com­ prising rare-earth trifluoride and sodium fluoride (NaL­ nF4), and reduced lanthanides have been identified in the interaction products by physico-chemical methods of analysis. It has been found that the degree of reduc­ tion of rare-earth fluorides depends on sodium concen­ tration in lead-sodium alloy. It has been found that at a reducing metal concentration in the alloy of over 15 wt %, practically complete reduction of rare-earth metal from its fluoride takes place, whereas at even fourfold excess of zirconium the degree of reduction of rare- earth fluorides is no more than 33…35 wt %. Comparison of the results of the work with the data, obtained earlier, on the interaction of rare-earth fluo­ rides with metallic zirconium and sodium in a molten sodium fluoride-lithium fluoride mixture [7, 9] shows that the change of the cationic composition of reaction mixtures (NaF–LiF, NaF–ZrF4) influences the stepwise character of exchange reactions between rare-earth fluo­ rides and reducing metals. In the system NaF–ZrF4, sodium and zirconium reduce not only rare-earth fluo­ rides but also zirconium tetrafluoride. Compounds of zirconium in lower oxidation states also show reducing ability with respect to rare-earth fluorides. An interaction takes place between rare-earth fluo­ rides and sodium and lithium fluorides to form complex compounds of the composition MLnF4 (where M = Li, Na). Increase in the atomic number of rare-earth ele­ ment does not affect the composition of these com­ pounds. ACKNOWLEDGEMENTS The work was supported by STCU Project #294. REFERENCES 1.C.D. Bowman. Sustained Nuclear Energy without Weapons or Reprocessing Using Accelerator-Driven System //Proceeding of the III Intern. Confer. оf Accelerator-Driven Transmutation Technologies. Praha, June 7–11. 1999, 20 p. 2.K. Furukava, A. Lecocq, Y. Kato, K. Mittachi, S.E. Chigrinov. Opening of Safe Thorium Utilization Way-Thorims – Nes by Plutonium-Burning and 233U- Production //Ukr. Khim. Zhurn. 1994, v. 60, # 7, p. 456–472. 3.G.N. Yakovlev, Ye.F. Myasoyedov, L.D. Dukhoven­ skaya, and V.I. Silin. Some questions of the chemistry of molten-salt reactors //Radiokhimiya. 1979, #5, p. 687–693. 4.V.P. Tolstoi, B.S. Zhuchkov, and I.V. Murin. Investi­ gation of compounds of group III A and III B metals in the case of their air storage //Zhurn. Neorg. Mater. 2000, v. 36, #1, p. 99–100. 5. A.J. Popov, G.E. Knudson. Preparation and Proper­ ties of the Rare Earth Fluorides and Oxyfluorides //Amer. Chem. Soc. 1954, v. 76, #15, p. 3921–3922. 6.R.M. Savchuk, P.G. Nagornyi, N.M. Kompanichenko, and A.O. Omelchuk. Use of the molten NaPO3 – V2O5 mixture in the differential thermal analysis of the inter­ action of rare-earth fluorides with zirconium. //Ukr. Khim. Zhurn. 2003, v. 69, #8, p. 71–74. 7.R.M. Savchuk, P.G. Nagornyi, N.M. Kompanichenko, and A.O. Omelchuk. Reduction of rare-earth fluorides by metallic sodium //Ukr. Khim. Zhurn. 2003, v. 69, #10, p. 69–73. __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 124 8.R.M. Savchuk, P.G. Nagornyi, N.M. Kompanichenko, and A.O. Omelchuk. Formation of compounds of zirco­ nium in lower oxidation states in the Zr-ZrF4 system //Ukr. Khim. Zhurn. 2003, v. 69, #3, p. 26–29. 9.R.M. Savchuk, P.G. Nagornyi, N.M. Kompanichenko, and A.O. Omelchuk. Reduction of rare-earth fluorides by zirconium //Zhurn. Neorg. Khim. 2003, v. 48, #10, p. 1596–1600. 10.K.A. Sense, C.A. Alexander, R.E. Bowman, R.B. Filbert, Jr. Vapor Pressure and Derived Information of the Sodium Fluoride-Zirconium fluoride System. De­ scription of a Method for the Determination of Molecu­ lar Complexes Present in the Vapor Phase //Journ. Phys. Chem. 1957, v. 61, p. 337–344 11.A.A. Babitsyna, and T.A. Yemelyanova. A study of interaction in the system NaF-BaF2-ZrF4 //Zhurn. Ne­ org. Khim. (38). 1993, #9, p. 1587–1589. 12.V.V. Serebrenikov. Chemistry of Rare-Earth Ele­ ment. Vol. 2. (in Russian). University of Tomsk Pub­ lishers. Tomsk. 1961. 13.Ion-Selective Electrodes. (edited by R. Darts). (in Russian). Moscow: “Mir”. 1972. 14.W.J. Hamer, M.S. Malmberg, B. Rubin. Theoretical Electromotive Force for Cell Containing a Single or Molten Fluoride, Bromide or Iodide //Jour. Electrochem. Soc. (112). 1965, #7, p. 750–754. 15.Powder Diffraction File Completed by the Joint Committee on Powder Diffraction Standards //American Society for Testing Materials (ASTM). 1989, Philadel­ phia. 16.F. Basile, E. Chassaing, G. Lorthioir. Synthesis of ZrCl3, ZrCl2, and ZrF2: Non-Stoichiometry of ZrF2 //Journ. Less Common Metals. 1984, v. 98, p. 1–10. ВЗАИМОДЕЙСТВИЕ ФТОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ С МЕТАЛЛАМИ В РАСПЛАВЛЕННОЙ СМЕСИ ФТОРИДОВ НАТРИЯ И ЦИРКОНИЯ Р.Н. Савчук, А.А. Омельчук, Н.М. Компаниченко Приведены результаты исследований взаимодействия фторидов редкоземельных элементов (РЗЭ) с металлическим натрием и цирконием в расплавленной смеси фторидов натрия и циркония. Исследования выполнены методами дифе­ ренциально-термического (ДТА), рентгенофазового (РФА), ИК-спектроскопии и химического анализов. Показано, что металлический натрий и цирконий восстанавливают фториды РЗЭ в температурном интервале, когда составные компо­ ненты реакционных смесей находятся в твердом состоянии, с образованием соединений циркония низших степеней окисления и редкоземельных металлов. Установлена прямолинейная зависимость температуры начала реакций обмена от химической природы галогенида РЗЭ: увеличение температуры плавления фторида РЗЭ приводит к повышению тем­ пературы начала взаимодействия. Степень восстановления фторидов РЗЭ металлами-восстановителями зависит от соот­ ношения компонентов в исходной реакционной смеси. ВЗАЄМОДІЯ ФТОРИДІВ РІДКІСНОЗЕМЕЛЬНИХЕЛЕМЕНТІВ З МЕТАЛАМИ В РОЗПЛАВЛЕНІЙ СУМІШІ ФТОРИДІВ НАТРІЮ ТА ЦИРКОНІЮ Р.М. Савчук, А.О. Омельчук, Н.М. Компаніченко Приведені результати досліджень взаємодії фторидів рідкісноземельних елементів (РЗЕ) з металічним натрієм та ци­ рконієм у розплавленій суміші фторидів натрію та цирконію. Дослідження виконані методами диференційно-термічного (ДТА), рентгенофазового (РФА), ІЧ-спектроскопії та хімічного аналізів. Показано, що металічний натрій та цирконій відновлюють фториди РЗЕ в температурному інтервалі, коли складові компоненти реакційних сумішей перебувають в твердій фазі, з утворенням сполук цирконію нижчих ступенів окислення та рідкісноземельних металів. Виявлена залеж­ ність температури початку реакцій обміну від хімічної природи галогеніду РЗЕ: зростання температури плавлення фториду РЗЕ призводить до підвищення температури початку взаємодії. Ступінь відновлення фторидів РЗЕ металами- відновниками залежить від співвідношення компонентів у вихідній реакційній суміші. __________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2005. №.4. Серия: Физика радиационных повреждений и радиационное материаловедение (87), с. 120-125. 125