Characteristics of synchrotron radiation of storage ring nestor and its applications
The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given. Прове...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2004 |
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/80611 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-80611 |
|---|---|
| record_format |
dspace |
| spelling |
Ivashchenko, V.E. Karnaukhov, I.M. Kovalyova, N.V. Shcherbakov, A.A. Zelinsky, A.Yu. 2015-04-19T17:04:07Z 2015-04-19T17:04:07Z 2004 Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.20.-c, 41.60.Ap, 29.27.Fh https://nasplib.isofts.kiev.ua/handle/123456789/80611 The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given. Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР. Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя электронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помощью СИ. Приведены возможные области применения СИ накопителя НЕСТОР. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Теория и техника ускорения частиц Characteristics of synchrotron radiation of storage ring nestor and its applications Характеристики синхротронного випромінювання нагромаджувача нестор та його використання Характеристики синхротронного излучения накопителя нестор и его применение Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Characteristics of synchrotron radiation of storage ring nestor and its applications |
| spellingShingle |
Characteristics of synchrotron radiation of storage ring nestor and its applications Ivashchenko, V.E. Karnaukhov, I.M. Kovalyova, N.V. Shcherbakov, A.A. Zelinsky, A.Yu. Теория и техника ускорения частиц |
| title_short |
Characteristics of synchrotron radiation of storage ring nestor and its applications |
| title_full |
Characteristics of synchrotron radiation of storage ring nestor and its applications |
| title_fullStr |
Characteristics of synchrotron radiation of storage ring nestor and its applications |
| title_full_unstemmed |
Characteristics of synchrotron radiation of storage ring nestor and its applications |
| title_sort |
characteristics of synchrotron radiation of storage ring nestor and its applications |
| author |
Ivashchenko, V.E. Karnaukhov, I.M. Kovalyova, N.V. Shcherbakov, A.A. Zelinsky, A.Yu. |
| author_facet |
Ivashchenko, V.E. Karnaukhov, I.M. Kovalyova, N.V. Shcherbakov, A.A. Zelinsky, A.Yu. |
| topic |
Теория и техника ускорения частиц |
| topic_facet |
Теория и техника ускорения частиц |
| publishDate |
2004 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Характеристики синхротронного випромінювання нагромаджувача нестор та його використання Характеристики синхротронного излучения накопителя нестор и его применение |
| description |
The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring
NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered.
The possible areas of SR application of the storage ring NESTOR are given.
Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів
нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого
пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР.
Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя электронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помощью СИ. Приведены возможные области применения СИ накопителя НЕСТОР.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/80611 |
| citation_txt |
Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT ivashchenkove characteristicsofsynchrotronradiationofstorageringnestoranditsapplications AT karnaukhovim characteristicsofsynchrotronradiationofstorageringnestoranditsapplications AT kovalyovanv characteristicsofsynchrotronradiationofstorageringnestoranditsapplications AT shcherbakovaa characteristicsofsynchrotronradiationofstorageringnestoranditsapplications AT zelinskyayu characteristicsofsynchrotronradiationofstorageringnestoranditsapplications AT ivashchenkove harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ AT karnaukhovim harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ AT kovalyovanv harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ AT shcherbakovaa harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ AT zelinskyayu harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ AT ivashchenkove harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie AT karnaukhovim harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie AT kovalyovanv harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie AT shcherbakovaa harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie AT zelinskyayu harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie |
| first_indexed |
2025-11-25T23:26:43Z |
| last_indexed |
2025-11-25T23:26:43Z |
| _version_ |
1850580525340688384 |
| fulltext |
CHARACTERISTICS OF SYNCHROTRON RADIATION
OF STORAGE RING NESTOR AND ITS APPLICATIONS
V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: shcherbakov@kipt.kharkov.ua
The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring
NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered.
The possible areas of SR application of the storage ring NESTOR are given.
PACS: 29.20.-c, 41.60.Ap, 29.27.Fh
INTRODUCTION
The interest to the synchrotron radiation sources
grows year by year [1]. Unique synchrotron radiation
(SR) properties have made it the powerful tool in real-
ization of scientific researches and solving of applied
tasks. SR is the excellent tool for diagnostics of a beam
of the charged particles.
In NSC KIPT the design of a generator of the X-ray
NESTOR on the basis of Compton scattering of an in-
tensive laser beam on electrons, which circulate in the
storage ring is carried out [2]. Besides generation of
hard X-ray photons in the storage ring NESTOR it is
supposed to utilize SR from bending magnets.
CHARACTERISTICS OF SYNCHROTRON
RADIATION OF NESTOR
At calculations of the radiation characteristics the
following parameters of the projected storage ring
NESTOR were used:
• energy of electron beam is 225 MeV
• the maximum stored current is 0.36 A
• bending radius in magnets is 0.5 m
The radiation has a continuous power spectrum. Its
intensity begins exponentially decrease, since so-called
critical energy of photons [3]:
[ ] [ ]
[ ]m
GeVEcKeVc ρρ
γ
ε
33
218.2
2
3
==
, (1)
where 2mc/E=γ is the relativistic factor, is the
Planks constant, с is the light velocity.
Half of photons, from emitted electron, are concen-
trated in the region of an energy spectrum up to critical
energy, half down. In a Fig. 1 the dependence of critical
energy of photons on electron energy in operation re-
gion of NESTOR is shown. So, the critical energy of the
NESTOR bending magnet radiation will be in the range
of value 0.5…50 eV (infrared, visible and VUV ranges).
The spectral and angular distribution of SR is de-
scribed by expression [3]:
[ ] ×
+=
Ω
2
22
6 1
4
3
// ψ
γω
ω
π
α γ
c
steradsphoton
d
dN
( ) ( ) ( ) ,
/1
2
3/122
2
2
3/2 ω
ωζ
ψγ
ψ
ζ ∆
+
+
e
IKK (2)
where ( )
cω
ψγω
ζ
2
1
3/222+
= , α is fine structure constant,
ω is radiation frequency, ωс is critical radiation frequen-
cy, ψ is characteristic vertical opening angle, е is elec-
tron charge.
Fig. 1. Critical energy of photons vs electron energy in
operation energy range of NESTOR
Photon number ΘddN , of given energy emitted in
1 mrad of horizontal angle per second in an interval of
wavelengths λλ∆ is received by integrating spectral
angular SR distribution (2) on a vertical angle and mul-
tiplying on number of particles in a beam (current of
beam). In practical units it is given by [3]:
[ ]
λλλλ /)/(GIE.
)mrads/(photon
d
dN
c ∆⋅⋅⋅⋅⋅=
=⋅
Θ
1
16104572
(3)
where ( ) ( )xdxk)/(G
/
/
c
c
c
∫
∞
=
λλλ
λ
λλ 351 , λ is wavelength
of SR, 3595 E/R.c =λ is critical wavelength of SR.
At a current of 0.36 A, and beam energy of
225 MeV the maximum flux of photons is equal to 1.4×
1012 (see Fig. 2).
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5.
Series: Nuclear Physics Investigations (44), p. 139-141. 139
Fig. 2. Photon flux vs on its energy
An opening angle of SR ψ(ω) can be approximated
with expressions [3]:
( )
( )
( )
> >
=
< <
=
с/
c
с
с/
c
при
/
при
при
/
ωω
ωωγ
ωω
γ
ωω
ωωγ
ωψ
21
31
1
1
1
(4)
The radiation in a low energy part of the spectrum
will be concentrated within angle which is bigger a little
then γ/1 and, otherwise, in high energy part of the
spectrum the value of radiation opening angle will be
smaller. So, in the radiation directivity diagram in the
center of the spectrum radiation will be harder then to
the boundaries. It is clear that main part of bending
magnet radiation of NESTOR will be concentrated
within solid angle of 0.012…0.0023 rad dependently on
electron beam energy. The power of photons beam de-
pends on number of radiated photons in view of their
energy and multiplication to number radiating electrons,
i.e. current of an electron beam.
The spectral power, integrated on all vertical angle
per milliradian of a horizontal angle, in practical units,
is given by [3] (see Fig. 3):
[ ]
[ ] [ ] ( )
λ
λ
ρ
∆⋅=
yGAI
m
GeVE
mrad
mWP 2
4
31073.8 , (5)
( ) ( )∫
∞
=
y
dxxKyyG 3/5
2
2 ,
λ
λ cy = .
Fig. 3. Spectral power of radiation
The complete radiated power along whole orbit for
NESTOR at electron beam energy 225 MeV will be:
[ ] [ ] [ ]
[ ] 0.1635.88 4
==
m
AIGeVEkWPSR ρ
(6)
Source spectral brightness is equal to emitted photon
number per solid angle unit per second from unit of
square in bandwidth ∆λ/λ depends on beam sizes xσ ,
zσ and its angle divergence as follow [3]:
( ) 2/122
22
/
)]%1.0/([
zzxN
smradmmBWphotonsB
σψσσ λλ
λ
′+⋅=
=⋅⋅⋅
(7)
where ψλ [mrad] is angle divergence of SR, zσ ′ [mrad]
is vertical RMS divergence of electron beam in a radia-
tion point.
Taking into account electron beam sizes at a radia-
tion point xσ =0.226 mm, zσ =0.13 mm SR divergence
ψ=0.012…0.0023 mrad and electron beam divergence
zσ ′ =0.13 mrad, we get the maximum value of the spec-
tral brightness from NESTOR bending magnet
1312 1021093 ××= .Bλ .
NESTOR SR UTILIZATION
It is supposed that one of SR channels, of electron
storage ring NESTOR, will be used for diagnostics of an
electron beam parameters. With the SR electron beam
cross-section, angular divergence of the particles, and
length of bunch will be obtain [4].
Determination of the beam cross-section will be car-
ried out with optical elements and of the detector
(charge coupled device (CCD)). SR emitted tangentially
at the bending magnet is extracted from the vacuum
chamber through a window. A lens or set of lenses is
then used to form an image of the source point on a
CCD. The main advantage of a scientific-grade CCD
are low read-out noise (less than 10 electrons per pixel,
when cooled (typically to between -20oC and -120oC)
and read-out slowly); low dark current (from 2 to
40 electrons/hour per pixel, when cooled); spatial reso-
lution is about 15 µm; high quantum efficiency (for
thinned, backside illuminated CCDs, the peak quantum
efficiency can exceed 80 %, and even for conventional
CCDs, values of over 30 % are typical) [5].
A similar measurement system was developed and
applied at Kharkov electron storage ring N-100 [6]. The
system used optical system, two dissectors LI-603 and
facility for automatic measurement. The system allowed
to measure electron beam sizes in range 0.5…9.9 mm at
electron current changes of about 5×10-3…5 A. Elec-
tronic equipment provided measurement accuracy of
about 2 % while dissector accuracy was strongly de-
pended on electron beam current (income SR flux) and
was in range 0.1…5 %.
It is also possible to observe the SR directly without
using focusing elements. In this case one measures the
angular distribution of the particles in the beam. SR is
extracted from the vacuum chamber through a window
of the storage ring with minimal possible losses on in-
140
tensity. There are two variants of measuring of SR in-
tensity, when the radiation is measured only in a median
plane of a bunch by one sensor, or when the system of
sensors sweeps a solid angle, where the main part SR
focused. For registration SR (the measuring its angular
distribution) the measuring systems with detectors of
various spectral sensitivity are designed and created.
Light-sensitive photodetectors (silicon photodiode is op-
erate in spectral region 0.4…1.1 µm, detector of lead-
selenide in spectral region 0.8…4.6 µm) allows to en-
sure measuring intensity of SR with relative accuracy
about 0.2 % and can register number of particles in re-
gion 107…1013 [7].
The bunch length can be measured by observing the
time structure of the emitted radiation. Since the light
pulse observed from each individual particle is very
short the time distribution of the radiation reflects di-
rectly the longitudinal bunch shape. A photon detector
is needed to measure this distribution. The resolution of
measuring system of the longitudinal size with SR in
principle is not limited due to properties of this radiation
and is completely determined by opportunities of mea-
suring devices. For example in NESTOR ring an elec-
tron bunch length will be of about 10-2 m. So, measuring
equipment should provide measurement of pulsed with
duration of about 3.3×10-11 s with repetition rate of
about 7.2×108.
SR is ideal calibrating instrument for vacuum ultra-
violet area of a spectrum. On the NESTOR it is possible
to create a beamline and to use it for absolute calibration
of dosimeters, detectors of electromagnetic radiation in
VUV area of a spectrum.
The opportunities of calibration and absolute mea-
surements are connected to SR applications in atomic
physics, spectroscopy of multicharged ions, by photo-
electronic spectroscopy of gases etc.
SR is successfully applied in research of solids, in
VUV spectroscopy of non-conductors, semiconductors
and metals. The high degree of SR polarization allows
to research an anisotropy of electron properties of a sol-
id and effectively to apply methods of an ellipsometry
in VUV area of a spectrum.
SR from bending magnets of the storage ring
NESTOR one may use for research in biology and
medicine.
SR from bending magnets with a wavelength about
100 Å is applied for researches of dynamics of proteins,
of spectroscopy of biopolymers. SR with a spectrum
from infrared to a visible range (λ≈3 µm…500 Å) will
find a use in biomedicine, microsurgeries and photother-
apies [8].
CONCLUSIONS
Thus, SR from bending magnets of the storage ring
NESTOR with such parameters as: critical energy in
range 0.5…50 eV, the maximum flux of photons is 1.4×
1012 [photon/(s⋅mrad)], the spectral brightness is
1312 1021093 ×× . [photon/(0.1%BW⋅mm2⋅mrad2⋅s)]
can be widely used for diagnostics of an electron beam
parameters, research of solids, VUV spectroscopy of
non-conductors, semiconductors and metals, research in
biology and medicine.
REFERENCES
1. C. Kunz. Synchrotron Radiation Techniques
and Applications. Moskow: “Mir”, 1981, p. 9-36
(in Russian).
2. P. Gladkikh, I. Karnaukhov, A. Zelinsky, et
all. Intense X – Ray Sources Based on Compton
Scattering in Laser Electron Storage Ring // Prob-
lems of Atomic Science and Technology, series:
Nuclear Physics Investigation. 2002, v. 40, №2,
p 72-74.
3. J. Murphy. Synchrotron Light Source. Data
Book, BNL-4233, 1989.
4. A. Hofmann. Characteristics of Synchrotron
Radiation // CAS CERN 98-04, 1998, p. 1-30.
5. Ernst-Eckhart Koch. Handbook on syn-
chrotron radiation. North-Holland Company,
1983, v. 1A.
6. V. Teslenko, A. Zelinsky. System of automatical
measurement of beam sizes in an electron storage ring
//Pribory i Technica Experimenta. 1987, №5, p. 41-43 (in
Russian).
7. A. Mal'tsev. Infrared synchrotron diagnostics
as a new direction in physics and technique of ac-
celerating experiment // Physics of Elementary
Particles and Atomic Nuclei. 1996, v. 27(3),
p. 797-848, (in Russian).
8. Materials of international working conference
«Synchrotron source UINR: prospects of research-
es» // UINR. 1999, Dubna (in Russian).
ХАРАКТЕРИСТИКИ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ НАКОПИТЕЛЯ НЕСТОР И ЕГО ПРИМЕНЕНИЕ
В.Е. Иващенко, И.М. Карнаухов, Н.В. Ковалёва, А.А. Щербаков, А.Ю. Зелинский
Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя элек-
тронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помо-
щью СИ. Приведены возможные области применения СИ накопителя НЕСТОР.
ХАРАКТЕРИСТИКИ СИНХРОТРОННОГО ВИПРОМІНЮВАННЯ
НАГРОМАДЖУВАЧА НЕСТОР ТА ЙОГО ВИКОРИСТАННЯ
В.Е. Іващенко, І.М. Карнаухов, Н.В. Ковальова, О.О. Щербаков, А.Ю. Зелінський
141
Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів
нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого
пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР.
142
|