Characteristics of synchrotron radiation of storage ring nestor and its applications

The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given. Прове...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2004
Hauptverfasser: Ivashchenko, V.E., Karnaukhov, I.M., Kovalyova, N.V., Shcherbakov, A.A., Zelinsky, A.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80611
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80611
record_format dspace
spelling Ivashchenko, V.E.
Karnaukhov, I.M.
Kovalyova, N.V.
Shcherbakov, A.A.
Zelinsky, A.Yu.
2015-04-19T17:04:07Z
2015-04-19T17:04:07Z
2004
Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 29.20.-c, 41.60.Ap, 29.27.Fh
https://nasplib.isofts.kiev.ua/handle/123456789/80611
The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given.
Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР.
Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя электронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помощью СИ. Приведены возможные области применения СИ накопителя НЕСТОР.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Теория и техника ускорения частиц
Characteristics of synchrotron radiation of storage ring nestor and its applications
Характеристики синхротронного випромінювання нагромаджувача нестор та його використання
Характеристики синхротронного излучения накопителя нестор и его применение
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Characteristics of synchrotron radiation of storage ring nestor and its applications
spellingShingle Characteristics of synchrotron radiation of storage ring nestor and its applications
Ivashchenko, V.E.
Karnaukhov, I.M.
Kovalyova, N.V.
Shcherbakov, A.A.
Zelinsky, A.Yu.
Теория и техника ускорения частиц
title_short Characteristics of synchrotron radiation of storage ring nestor and its applications
title_full Characteristics of synchrotron radiation of storage ring nestor and its applications
title_fullStr Characteristics of synchrotron radiation of storage ring nestor and its applications
title_full_unstemmed Characteristics of synchrotron radiation of storage ring nestor and its applications
title_sort characteristics of synchrotron radiation of storage ring nestor and its applications
author Ivashchenko, V.E.
Karnaukhov, I.M.
Kovalyova, N.V.
Shcherbakov, A.A.
Zelinsky, A.Yu.
author_facet Ivashchenko, V.E.
Karnaukhov, I.M.
Kovalyova, N.V.
Shcherbakov, A.A.
Zelinsky, A.Yu.
topic Теория и техника ускорения частиц
topic_facet Теория и техника ускорения частиц
publishDate 2004
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Характеристики синхротронного випромінювання нагромаджувача нестор та його використання
Характеристики синхротронного излучения накопителя нестор и его применение
description The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given. Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР. Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя электронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помощью СИ. Приведены возможные области применения СИ накопителя НЕСТОР.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/80611
citation_txt Characteristics of synchrotron radiation of storage ring nestor and its applications / V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky // Вопросы атомной науки и техники. — 2004. — № 5. — С. 139-141. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT ivashchenkove characteristicsofsynchrotronradiationofstorageringnestoranditsapplications
AT karnaukhovim characteristicsofsynchrotronradiationofstorageringnestoranditsapplications
AT kovalyovanv characteristicsofsynchrotronradiationofstorageringnestoranditsapplications
AT shcherbakovaa characteristicsofsynchrotronradiationofstorageringnestoranditsapplications
AT zelinskyayu characteristicsofsynchrotronradiationofstorageringnestoranditsapplications
AT ivashchenkove harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ
AT karnaukhovim harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ
AT kovalyovanv harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ
AT shcherbakovaa harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ
AT zelinskyayu harakteristikisinhrotronnogovipromínûvannânagromadžuvačanestortaiogovikoristannâ
AT ivashchenkove harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie
AT karnaukhovim harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie
AT kovalyovanv harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie
AT shcherbakovaa harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie
AT zelinskyayu harakteristikisinhrotronnogoizlučeniânakopitelânestoriegoprimenenie
first_indexed 2025-11-25T23:26:43Z
last_indexed 2025-11-25T23:26:43Z
_version_ 1850580525340688384
fulltext CHARACTERISTICS OF SYNCHROTRON RADIATION OF STORAGE RING NESTOR AND ITS APPLICATIONS V.E. Ivashchenko, I.M. Karnaukhov, N.V. Kovalyova, A.A. Shcherbakov, A.Yu. Zelinsky National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail: shcherbakov@kipt.kharkov.ua The results of calculations of the basic SR characteristics, generated from bending magnets of the storage ring NESTOR are presented. The methods of parameter measurements of a circulating beam with SR are considered. The possible areas of SR application of the storage ring NESTOR are given. PACS: 29.20.-c, 41.60.Ap, 29.27.Fh INTRODUCTION The interest to the synchrotron radiation sources grows year by year [1]. Unique synchrotron radiation (SR) properties have made it the powerful tool in real- ization of scientific researches and solving of applied tasks. SR is the excellent tool for diagnostics of a beam of the charged particles. In NSC KIPT the design of a generator of the X-ray NESTOR on the basis of Compton scattering of an in- tensive laser beam on electrons, which circulate in the storage ring is carried out [2]. Besides generation of hard X-ray photons in the storage ring NESTOR it is supposed to utilize SR from bending magnets. CHARACTERISTICS OF SYNCHROTRON RADIATION OF NESTOR At calculations of the radiation characteristics the following parameters of the projected storage ring NESTOR were used: • energy of electron beam is 225 MeV • the maximum stored current is 0.36 A • bending radius in magnets is 0.5 m The radiation has a continuous power spectrum. Its intensity begins exponentially decrease, since so-called critical energy of photons [3]: [ ] [ ] [ ]m GeVEcKeVc ρρ γ ε 33 218.2 2 3 ==  , (1) where 2mc/E=γ is the relativistic factor,  is the Planks constant, с is the light velocity. Half of photons, from emitted electron, are concen- trated in the region of an energy spectrum up to critical energy, half down. In a Fig. 1 the dependence of critical energy of photons on electron energy in operation re- gion of NESTOR is shown. So, the critical energy of the NESTOR bending magnet radiation will be in the range of value 0.5…50 eV (infrared, visible and VUV ranges). The spectral and angular distribution of SR is de- scribed by expression [3]: [ ] ×    += Ω 2 22 6 1 4 3 // ψ γω ω π α γ c steradsphoton d dN ( ) ( ) ( ) , /1 2 3/122 2 2 3/2 ω ωζ ψγ ψ ζ ∆       + + e IKK (2) where ( ) cω ψγω ζ 2 1 3/222+ = , α is fine structure constant, ω is radiation frequency, ωс is critical radiation frequen- cy, ψ is characteristic vertical opening angle, е is elec- tron charge. Fig. 1. Critical energy of photons vs electron energy in operation energy range of NESTOR Photon number ΘddN , of given energy emitted in 1 mrad of horizontal angle per second in an interval of wavelengths λλ∆ is received by integrating spectral angular SR distribution (2) on a vertical angle and mul- tiplying on number of particles in a beam (current of beam). In practical units it is given by [3]: [ ] λλλλ /)/(GIE. )mrads/(photon d dN c ∆⋅⋅⋅⋅⋅= =⋅ Θ 1 16104572 (3) where ( ) ( )xdxk)/(G / / c c c ∫ ∞ = λλλ λ λλ 351 , λ is wavelength of SR, 3595 E/R.c =λ is critical wavelength of SR. At a current of 0.36 A, and beam energy of 225 MeV the maximum flux of photons is equal to 1.4× 1012 (see Fig. 2). PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2004, № 5. Series: Nuclear Physics Investigations (44), p. 139-141. 139 Fig. 2. Photon flux vs on its energy An opening angle of SR ψ(ω) can be approximated with expressions [3]: ( ) ( ) ( )          > > = < < = с/ c с с/ c при / при при / ωω ωωγ ωω γ ωω ωωγ ωψ 21 31 1 1 1 (4) The radiation in a low energy part of the spectrum will be concentrated within angle which is bigger a little then γ/1 and, otherwise, in high energy part of the spectrum the value of radiation opening angle will be smaller. So, in the radiation directivity diagram in the center of the spectrum radiation will be harder then to the boundaries. It is clear that main part of bending magnet radiation of NESTOR will be concentrated within solid angle of 0.012…0.0023 rad dependently on electron beam energy. The power of photons beam de- pends on number of radiated photons in view of their energy and multiplication to number radiating electrons, i.e. current of an electron beam. The spectral power, integrated on all vertical angle per milliradian of a horizontal angle, in practical units, is given by [3] (see Fig. 3): [ ] [ ] [ ] ( ) λ λ ρ ∆⋅=    yGAI m GeVE mrad mWP 2 4 31073.8 , (5) ( ) ( )∫ ∞ = y dxxKyyG 3/5 2 2 , λ λ cy = . Fig. 3. Spectral power of radiation The complete radiated power along whole orbit for NESTOR at electron beam energy 225 MeV will be: [ ] [ ] [ ] [ ] 0.1635.88 4 == m AIGeVEkWPSR ρ (6) Source spectral brightness is equal to emitted photon number per solid angle unit per second from unit of square in bandwidth ∆λ/λ depends on beam sizes xσ , zσ and its angle divergence as follow [3]: ( ) 2/122 22 / )]%1.0/([ zzxN smradmmBWphotonsB σψσσ λλ λ ′+⋅= =⋅⋅⋅ (7) where ψλ [mrad] is angle divergence of SR, zσ ′ [mrad] is vertical RMS divergence of electron beam in a radia- tion point. Taking into account electron beam sizes at a radia- tion point xσ =0.226 mm, zσ =0.13 mm SR divergence ψ=0.012…0.0023 mrad and electron beam divergence zσ ′ =0.13 mrad, we get the maximum value of the spec- tral brightness from NESTOR bending magnet 1312 1021093 ××= .Bλ . NESTOR SR UTILIZATION It is supposed that one of SR channels, of electron storage ring NESTOR, will be used for diagnostics of an electron beam parameters. With the SR electron beam cross-section, angular divergence of the particles, and length of bunch will be obtain [4]. Determination of the beam cross-section will be car- ried out with optical elements and of the detector (charge coupled device (CCD)). SR emitted tangentially at the bending magnet is extracted from the vacuum chamber through a window. A lens or set of lenses is then used to form an image of the source point on a CCD. The main advantage of a scientific-grade CCD are low read-out noise (less than 10 electrons per pixel, when cooled (typically to between -20oC and -120oC) and read-out slowly); low dark current (from 2 to 40 electrons/hour per pixel, when cooled); spatial reso- lution is about 15 µm; high quantum efficiency (for thinned, backside illuminated CCDs, the peak quantum efficiency can exceed 80 %, and even for conventional CCDs, values of over 30 % are typical) [5]. A similar measurement system was developed and applied at Kharkov electron storage ring N-100 [6]. The system used optical system, two dissectors LI-603 and facility for automatic measurement. The system allowed to measure electron beam sizes in range 0.5…9.9 mm at electron current changes of about 5×10-3…5 A. Elec- tronic equipment provided measurement accuracy of about 2 % while dissector accuracy was strongly de- pended on electron beam current (income SR flux) and was in range 0.1…5 %. It is also possible to observe the SR directly without using focusing elements. In this case one measures the angular distribution of the particles in the beam. SR is extracted from the vacuum chamber through a window of the storage ring with minimal possible losses on in- 140 tensity. There are two variants of measuring of SR in- tensity, when the radiation is measured only in a median plane of a bunch by one sensor, or when the system of sensors sweeps a solid angle, where the main part SR focused. For registration SR (the measuring its angular distribution) the measuring systems with detectors of various spectral sensitivity are designed and created. Light-sensitive photodetectors (silicon photodiode is op- erate in spectral region 0.4…1.1 µm, detector of lead- selenide in spectral region 0.8…4.6 µm) allows to en- sure measuring intensity of SR with relative accuracy about 0.2 % and can register number of particles in re- gion 107…1013 [7]. The bunch length can be measured by observing the time structure of the emitted radiation. Since the light pulse observed from each individual particle is very short the time distribution of the radiation reflects di- rectly the longitudinal bunch shape. A photon detector is needed to measure this distribution. The resolution of measuring system of the longitudinal size with SR in principle is not limited due to properties of this radiation and is completely determined by opportunities of mea- suring devices. For example in NESTOR ring an elec- tron bunch length will be of about 10-2 m. So, measuring equipment should provide measurement of pulsed with duration of about 3.3×10-11 s with repetition rate of about 7.2×108. SR is ideal calibrating instrument for vacuum ultra- violet area of a spectrum. On the NESTOR it is possible to create a beamline and to use it for absolute calibration of dosimeters, detectors of electromagnetic radiation in VUV area of a spectrum. The opportunities of calibration and absolute mea- surements are connected to SR applications in atomic physics, spectroscopy of multicharged ions, by photo- electronic spectroscopy of gases etc. SR is successfully applied in research of solids, in VUV spectroscopy of non-conductors, semiconductors and metals. The high degree of SR polarization allows to research an anisotropy of electron properties of a sol- id and effectively to apply methods of an ellipsometry in VUV area of a spectrum. SR from bending magnets of the storage ring NESTOR one may use for research in biology and medicine. SR from bending magnets with a wavelength about 100 Å is applied for researches of dynamics of proteins, of spectroscopy of biopolymers. SR with a spectrum from infrared to a visible range (λ≈3 µm…500 Å) will find a use in biomedicine, microsurgeries and photother- apies [8]. CONCLUSIONS Thus, SR from bending magnets of the storage ring NESTOR with such parameters as: critical energy in range 0.5…50 eV, the maximum flux of photons is 1.4× 1012 [photon/(s⋅mrad)], the spectral brightness is 1312 1021093 ×× . [photon/(0.1%BW⋅mm2⋅mrad2⋅s)] can be widely used for diagnostics of an electron beam parameters, research of solids, VUV spectroscopy of non-conductors, semiconductors and metals, research in biology and medicine. REFERENCES 1. C. Kunz. Synchrotron Radiation Techniques and Applications. Moskow: “Mir”, 1981, p. 9-36 (in Russian). 2. P. Gladkikh, I. Karnaukhov, A. Zelinsky, et all. Intense X – Ray Sources Based on Compton Scattering in Laser Electron Storage Ring // Prob- lems of Atomic Science and Technology, series: Nuclear Physics Investigation. 2002, v. 40, №2, p 72-74. 3. J. Murphy. Synchrotron Light Source. Data Book, BNL-4233, 1989. 4. A. Hofmann. Characteristics of Synchrotron Radiation // CAS CERN 98-04, 1998, p. 1-30. 5. Ernst-Eckhart Koch. Handbook on syn- chrotron radiation. North-Holland Company, 1983, v. 1A. 6. V. Teslenko, A. Zelinsky. System of automatical measurement of beam sizes in an electron storage ring //Pribory i Technica Experimenta. 1987, №5, p. 41-43 (in Russian). 7. A. Mal'tsev. Infrared synchrotron diagnostics as a new direction in physics and technique of ac- celerating experiment // Physics of Elementary Particles and Atomic Nuclei. 1996, v. 27(3), p. 797-848, (in Russian). 8. Materials of international working conference «Synchrotron source UINR: prospects of research- es» // UINR. 1999, Dubna (in Russian). ХАРАКТЕРИСТИКИ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ НАКОПИТЕЛЯ НЕСТОР И ЕГО ПРИМЕНЕНИЕ В.Е. Иващенко, И.М. Карнаухов, Н.В. Ковалёва, А.А. Щербаков, А.Ю. Зелинский Проведен расчет основных характеристик СИ, генерируемого из поворотных магнитов накопителя элек- тронов НЕСТОР. Рассмотрены методики проведения измерений параметров циркулирующего пучка с помо- щью СИ. Приведены возможные области применения СИ накопителя НЕСТОР. ХАРАКТЕРИСТИКИ СИНХРОТРОННОГО ВИПРОМІНЮВАННЯ НАГРОМАДЖУВАЧА НЕСТОР ТА ЙОГО ВИКОРИСТАННЯ В.Е. Іващенко, І.М. Карнаухов, Н.В. Ковальова, О.О. Щербаков, А.Ю. Зелінський 141 Проведено розрахунок основних характеристик СВ, що генерується з поворотних магнітів нагромаджувача електронів НЕСТОР. Розглянуто методики проведення вимірів параметрів циркулюючого пучка за допомогою СВ. Приведено можливі області застосування СВ нагромаджувача НЕСТОР. 142