Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости

Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы машиностроения
Datum:2013
1. Verfasser: Дёмин, Д.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/80953
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д.А. Дёмин // Проблемы машиностроения. — 2013. — Т. 16, № 6. — С. 15-23. — Бібліогр.: 23 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-80953
record_format dspace
spelling Дёмин, Д.А.
2015-04-28T18:45:55Z
2015-04-28T18:45:55Z
2013
Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д.А. Дёмин // Проблемы машиностроения. — 2013. — Т. 16, № 6. — С. 15-23. — Бібліогр.: 23 назв. — рос.
0131-2928
https://nasplib.isofts.kiev.ua/handle/123456789/80953
681.5:519.24
Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработка процедуры нечеткой кластеризации, позволяющей «разнести» все экспериментальные точки в многомерном факторном пространстве, «приписав» их к той или иной вершине гиперкуба, формирующего план полного факторного эксперимента для реализации последующей процедуры ортогонализации. Математическая модель процесса представляет собой регрессионное уравнение в виде полинома Колмогорова-Габора, описывающее влияние нечётких входных переменных – состава сплава – на его свойства. Это так называемая модель типа «состав – свойство». В результате реализации предложенной процедуры нечёткой кластеризации, обязательной перед построением уравнения регрессии в случае, если область планирования имеет произвольную форму, может быть установлен кластер, «ближайший» по отношению к рассматриваемой экспериментальной точке и осуществлена процедура отнесения соответствующей точки к тому или иному центру кластеризации. Полученные при этом результаты могут быть использованы для дальнейшей процедуры построения уравнения регрессии. Предложен алгоритм нечеткой кластеризации и приведены примеры расчета функций принадлежности, используемых при реализации этого алгоритма. Использование предлагаемой процедуры является эффективным при оценке параметров математических моделей по данным пассивного эксперимента в условиях малой выборки нечетких данных.
Описані результати досліджень, присвячених розробці процедури нечіткої кластеризації експериментальних точок при побудові математичних моделей типу «склад – властивості» за даними пасивного експерименту. Запропоновано алгоритм нечіткої кластеризації та наведені приклади розрахунку функцій належності, що використовуються при реалізації цього алгоритму. Використання процедури, що пропонується, може бути здійснено при оцінюванні параметрів математичних моделей за даними пасивного експерименту в умовах малої вибірки нечітких даних.
Relevance of research, results of which are given in the paper concerns the development of methods for estimating the parameters of mathematical models in case they are built on the passive experiment results in conditions of small sample of fuzzy data. The first stage in this process is to develop a fuzzy clustering procedure, which allows to "spread" all experimental points in a multidimensional factor space, having "attributed" them to this or that hypercube top, forming a plan of full factorial experiment to implement the further orthogonalization procedure. The mathematical model of the process is the regression equation in the form of the Kolmogorov-Gabor polynomial, describing the influence of fuzzy input variables, i.e. alloy structure, on its properties. It is so-called "structure - property" model. As a result of realization of the proposed fuzzy clustering procedure, obligatory before building up the regression equation in case the planning area has an arbitrary shape, cluster, "nearest" to the considered experimental point can be installed and procedure of referring the corresponding point to this or that clustering center can be carried out. The results obtained can be used for the further construction procedure of the regression equation. The fuzzy clustering algorithm was proposed, and calculation examples of membership functions, used in the implementation of this algorithm were given. Using the proposed procedure is effective in estimating the parameters of mathematical models according to the passive experiment data in conditions of small sample of fuzzy data.
ru
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
Проблемы машиностроения
Прикладная математика
Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
Mathematical modeling in the problem of selecting optimal control of obtaining alloys for machine parts in uncertainty conditions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
spellingShingle Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
Дёмин, Д.А.
Прикладная математика
title_short Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
title_full Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
title_fullStr Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
title_full_unstemmed Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости
title_sort нечеткая кластеризация в задаче построение моделей «состав – свойство» по данным пассивного эксперимента в условиях неопределённости
author Дёмин, Д.А.
author_facet Дёмин, Д.А.
topic Прикладная математика
topic_facet Прикладная математика
publishDate 2013
language Russian
container_title Проблемы машиностроения
publisher Інстиут проблем машинобудування ім. А.М. Підгорного НАН України
format Article
title_alt Mathematical modeling in the problem of selecting optimal control of obtaining alloys for machine parts in uncertainty conditions
description Актуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработка процедуры нечеткой кластеризации, позволяющей «разнести» все экспериментальные точки в многомерном факторном пространстве, «приписав» их к той или иной вершине гиперкуба, формирующего план полного факторного эксперимента для реализации последующей процедуры ортогонализации. Математическая модель процесса представляет собой регрессионное уравнение в виде полинома Колмогорова-Габора, описывающее влияние нечётких входных переменных – состава сплава – на его свойства. Это так называемая модель типа «состав – свойство». В результате реализации предложенной процедуры нечёткой кластеризации, обязательной перед построением уравнения регрессии в случае, если область планирования имеет произвольную форму, может быть установлен кластер, «ближайший» по отношению к рассматриваемой экспериментальной точке и осуществлена процедура отнесения соответствующей точки к тому или иному центру кластеризации. Полученные при этом результаты могут быть использованы для дальнейшей процедуры построения уравнения регрессии. Предложен алгоритм нечеткой кластеризации и приведены примеры расчета функций принадлежности, используемых при реализации этого алгоритма. Использование предлагаемой процедуры является эффективным при оценке параметров математических моделей по данным пассивного эксперимента в условиях малой выборки нечетких данных. Описані результати досліджень, присвячених розробці процедури нечіткої кластеризації експериментальних точок при побудові математичних моделей типу «склад – властивості» за даними пасивного експерименту. Запропоновано алгоритм нечіткої кластеризації та наведені приклади розрахунку функцій належності, що використовуються при реалізації цього алгоритму. Використання процедури, що пропонується, може бути здійснено при оцінюванні параметрів математичних моделей за даними пасивного експерименту в умовах малої вибірки нечітких даних. Relevance of research, results of which are given in the paper concerns the development of methods for estimating the parameters of mathematical models in case they are built on the passive experiment results in conditions of small sample of fuzzy data. The first stage in this process is to develop a fuzzy clustering procedure, which allows to "spread" all experimental points in a multidimensional factor space, having "attributed" them to this or that hypercube top, forming a plan of full factorial experiment to implement the further orthogonalization procedure. The mathematical model of the process is the regression equation in the form of the Kolmogorov-Gabor polynomial, describing the influence of fuzzy input variables, i.e. alloy structure, on its properties. It is so-called "structure - property" model. As a result of realization of the proposed fuzzy clustering procedure, obligatory before building up the regression equation in case the planning area has an arbitrary shape, cluster, "nearest" to the considered experimental point can be installed and procedure of referring the corresponding point to this or that clustering center can be carried out. The results obtained can be used for the further construction procedure of the regression equation. The fuzzy clustering algorithm was proposed, and calculation examples of membership functions, used in the implementation of this algorithm were given. Using the proposed procedure is effective in estimating the parameters of mathematical models according to the passive experiment data in conditions of small sample of fuzzy data.
issn 0131-2928
url https://nasplib.isofts.kiev.ua/handle/123456789/80953
citation_txt Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д.А. Дёмин // Проблемы машиностроения. — 2013. — Т. 16, № 6. — С. 15-23. — Бібліогр.: 23 назв. — рос.
work_keys_str_mv AT deminda nečetkaâklasterizaciâvzadačepostroeniemodeleisostavsvoistvopodannympassivnogoéksperimentavusloviâhneopredelennosti
AT deminda mathematicalmodelingintheproblemofselectingoptimalcontrolofobtainingalloysformachinepartsinuncertaintyconditions
first_indexed 2025-11-30T09:36:56Z
last_indexed 2025-11-30T09:36:56Z
_version_ 1850857080047534080