Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei

The torus concept as an essential structural component of active galactic nuclei (AGN) is generally accepted. Here, the situation is discussed when “twisting” the torus by radiation or wind transforms it into a dipole toroidal vortex which in turn can be the source of matter replenishing the accre...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2006
Автори: Bannikova, E.Yu., Kontorovich, V.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81160
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei / E.Yu. Bannikova, V.M. Kontorovich // Вопросы атомной науки и техники. — 2006. — № 5. — С. 146-151. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81160
record_format dspace
spelling Bannikova, E.Yu.
Kontorovich, V.M.
2015-05-11T19:23:57Z
2015-05-11T19:23:57Z
2006
Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei / E.Yu. Bannikova, V.M. Kontorovich // Вопросы атомной науки и техники. — 2006. — № 5. — С. 146-151. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 94.30.Tz
https://nasplib.isofts.kiev.ua/handle/123456789/81160
The torus concept as an essential structural component of active galactic nuclei (AGN) is generally accepted. Here, the situation is discussed when “twisting” the torus by radiation or wind transforms it into a dipole toroidal vortex which in turn can be the source of matter replenishing the accretion disk. Thus originating instability which can be responsible for quasar radiation flares accompanied by matter outbursts is also discussed. A “matreshka” scheme for obscuring vortex torus structure that could explain the AGN variability and evolution is proposed. The model parameters estimated numerically for the luminosity close to the Eddington limit agree well with the observations.
Принята концепция тора как неотъемлемая структурная компонента ядра активной галактики (ЯАГ). Здесь обсуждается ситуация, когда «вращающийся» тор благодаря излучению или ветру трансформируется в тороидальный вихрь, который может быть источником вещества, пополняющего акреационный диск. Таким образом обсуждено также, что исходная неустойчивость может быть ответственна за вспышки излучения квазаров, сопровождающиеся выбросами вещества. Предложена схема “матрешка” для структуры н блюдающегося тороидального вихря, которая может объяснить изменчивость и эволюцию ЯАГ. Параметры модели оценены численно для яркости, близкой к Эддингтоновскому пределу и хорошо согласуются с наблюдениями.
Прийнята концепція тора як невід’ємної структурної компоненти ядра активної галактики (ЯАГ). Тут обговорюється ситуація, коли «твістуючий» тор завдяки випромінюванню або вітрові трансформується в тороїдальний вихор, котрий може бути джерелом речовини, що поповнює акреаційний диск. Таким чином обговорено також, що первісна нестійкість може бути відповідальна за спалахи випромінювання квазарів, які супроводжуються викидами речовини. Запропонована схема “матрьошка” для структури тороїдального вихорю, яка може пояснити змінність та еволюцію ЯАГ. Параметри моделі оцінені чисельно для яскравості, близької до Едингтонівської межі та добре узгоджуються зі спостереженнями.
This work is partly supported by the Ukraine President grant ГП/Ф8/0051.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Космическая плазма
Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
Дипольные тороидальные вихри и ветрово-акpеационная неустойчивость в ядре активной галактики
Дипольні тороїдальні вихорі та вітрово-акpеаційна нестійкість у ядрі активної галактики
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
spellingShingle Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
Bannikova, E.Yu.
Kontorovich, V.M.
Космическая плазма
title_short Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
title_full Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
title_fullStr Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
title_full_unstemmed Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
title_sort dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei
author Bannikova, E.Yu.
Kontorovich, V.M.
author_facet Bannikova, E.Yu.
Kontorovich, V.M.
topic Космическая плазма
topic_facet Космическая плазма
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дипольные тороидальные вихри и ветрово-акpеационная неустойчивость в ядре активной галактики
Дипольні тороїдальні вихорі та вітрово-акpеаційна нестійкість у ядрі активної галактики
description The torus concept as an essential structural component of active galactic nuclei (AGN) is generally accepted. Here, the situation is discussed when “twisting” the torus by radiation or wind transforms it into a dipole toroidal vortex which in turn can be the source of matter replenishing the accretion disk. Thus originating instability which can be responsible for quasar radiation flares accompanied by matter outbursts is also discussed. A “matreshka” scheme for obscuring vortex torus structure that could explain the AGN variability and evolution is proposed. The model parameters estimated numerically for the luminosity close to the Eddington limit agree well with the observations. Принята концепция тора как неотъемлемая структурная компонента ядра активной галактики (ЯАГ). Здесь обсуждается ситуация, когда «вращающийся» тор благодаря излучению или ветру трансформируется в тороидальный вихрь, который может быть источником вещества, пополняющего акреационный диск. Таким образом обсуждено также, что исходная неустойчивость может быть ответственна за вспышки излучения квазаров, сопровождающиеся выбросами вещества. Предложена схема “матрешка” для структуры н блюдающегося тороидального вихря, которая может объяснить изменчивость и эволюцию ЯАГ. Параметры модели оценены численно для яркости, близкой к Эддингтоновскому пределу и хорошо согласуются с наблюдениями. Прийнята концепція тора як невід’ємної структурної компоненти ядра активної галактики (ЯАГ). Тут обговорюється ситуація, коли «твістуючий» тор завдяки випромінюванню або вітрові трансформується в тороїдальний вихор, котрий може бути джерелом речовини, що поповнює акреаційний диск. Таким чином обговорено також, що первісна нестійкість може бути відповідальна за спалахи випромінювання квазарів, які супроводжуються викидами речовини. Запропонована схема “матрьошка” для структури тороїдального вихорю, яка може пояснити змінність та еволюцію ЯАГ. Параметри моделі оцінені чисельно для яскравості, близької до Едингтонівської межі та добре узгоджуються зі спостереженнями.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/81160
citation_txt Dipole toroidal vortexes and wind-accretion instability in active galaxy nuclei / E.Yu. Bannikova, V.M. Kontorovich // Вопросы атомной науки и техники. — 2006. — № 5. — С. 146-151. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT bannikovaeyu dipoletoroidalvortexesandwindaccretioninstabilityinactivegalaxynuclei
AT kontorovichvm dipoletoroidalvortexesandwindaccretioninstabilityinactivegalaxynuclei
AT bannikovaeyu dipolʹnyetoroidalʹnyevihriivetrovoakpeacionnaâneustoičivostʹvâdreaktivnoigalaktiki
AT kontorovichvm dipolʹnyetoroidalʹnyevihriivetrovoakpeacionnaâneustoičivostʹvâdreaktivnoigalaktiki
AT bannikovaeyu dipolʹnítoroídalʹnívihorítavítrovoakpeacíinanestíikístʹuâdríaktivnoígalaktiki
AT kontorovichvm dipolʹnítoroídalʹnívihorítavítrovoakpeacíinanestíikístʹuâdríaktivnoígalaktiki
first_indexed 2025-11-26T23:30:39Z
last_indexed 2025-11-26T23:30:39Z
_version_ 1850781261969227776
fulltext DIPOLE TOROIDAL VORTEXES AND WIND-ACCRETION INSTABILI- TY IN ACTIVE GALAXY NUCLEI E.Yu. Bannikova, V.M. Kontorovich Kharkov National University, Kharkov, Ukraine E-mail: bannikova@astron.kharkov.ua Institute of Radio Astronomy NAS of Ukraine, Kharkov, Ukraine E-mail: vkont@ira. kharkov.ua The torus concept as an essential structural component of active galactic nuclei (AGN) is generally accepted. Here, the situation is discussed when “twisting” the torus by radiation or wind transforms it into a dipole toroidal vortex which in turn can be the source of matter replenishing the accretion disk. Thus originating instability which can be re- sponsible for quasar radiation flares accompanied by matter outbursts is also discussed. A “matreshka” scheme for ob- scuring vortex torus structure that could explain the AGN variability and evolution is proposed. The model parameters estimated numerically for the luminosity close to the Eddington limit agree well with the observations. PACS: 94.30.Tz 1. INTRODUCTION Starting with the Antonucci and Miller’s outstanding work, tori have been considered as an AGN-structure necessary element forming the basis of the AGN unified model [1]. A brilliant achievement was the first direct observation of the obscuring tori described by Jaffe and his colleagues [2]. Tori were positively confirmed exist- ing when observed with the Hubble telescope and the MIDI IR-camera equiped VLT optical interferometer, though the efforts to reveal their structure detail and in- ternal motion are yet to come. Many papers are devoted to tori as embodiments of thick accretion disks, and also investigate their stability defined by the orbital motion gradients. However, within the AGN structure they are mainly considered purely geometrically. We offer to consider a torus as a dynamic object with its proper vortex motion. As is well known, a torus allows two independent rotations: “orbital” over the torus periphery and “vortical” over its inner-radius cir- cle (our terms). This latter will be of our major interest. The vortical motion in a self-gravitating torus (see dis- cussion in [3]) is vitally different from the orbital one, which in an oversimplified case merely means rotation of a torus as a single whole about the axis of symmetry. For the near Eddington limit luminosity EddL L≈ , when the gravitation is largely balanced by light pres- sure, this motion in AGN is not so essential. Though it is necessary to stabilize self-gravitation of a compact toroidal vortex [4], as used here, it can be quite neglect- ed at first. The vortical torus motion, which makes the torus the vortex, will be of most importance in the following. Originating or being sustained by the central source ra- diation or wind «twist» it is capable of «replenishing» the accretion disk mass, thereby adjusting the process of accretion and introducing a feedback (Fig.1). Here, the dipole structure of a toroidal vortex defined by the sym- metry of radial-outflowing wind and radiation is of im- portance. Note that the streamline structure across such a dipole vortex resembles the structure and topology of streamlines in the well-studied hydrodynamic models, such as Hill and Lamb’s vortices [5], Larichev-Reznik solitons, and others. At the same time, each component of a toroidal dipole taken separately resembles the Maxwell vortex, though with the opposite direction of rotation. Fig.1. Dipole toroidal vortex in the center of AGN – 3D picture. Conic sections sketch out the wind and radiation 2. TWISTING A VORTEX BY RADIATION At the torus large radius distance R, the central source emitted light pressure is L/(4πcR2). The equation for a vortical motion momentum takes the form: 2 2 ( ) 4twist dp L R r r dt cR ϕ π π ς θ π = Ч Ч Ч ж ц з ч и ш , (2.1) where the right-hand side is the modulus of a force twisting moment with the arm of about a torus small radius r, which appears due to the radiation pressure on the inner torus surface ( 2 R rπ π≈ Ч ). Factor ( ) 1ς θ Ј takes into account the torus shape effect and the radiant flux angular dependence. The momentum [3] is related with circulation and mass as / 2ringp Mϕ π= Γ , where Mring is the torus mass and 2 vd r jp=G Ч=т v rС is the torus inner circle velocity circulation. Twisting, which turns the torus into a toroidal (ring) vortex and sustains its vortical motion (the velocity circulation), by virtue of the symmetry should result in a “dipole” vortex whose “northern” and “southern” components rotate in oppo- site directions (Fig.2). ________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5. Серия: Плазменная электроника и новые методы ускорения (5), с.146-151. 146 Fig.2. Schematic of a central source wind- and radia- tion-twisted vortex The streamline cross-section should resemble a pair of vortices of different signs. Such a system, as is known, moves as a whole with the velocity /(4 )ringV rπ= Γ . As Lamb notes [5, p.300] this motion can be interpreted as the necessity to compensate the at- traction of vortices induced by the Bernoulli effect aris- ing due to a flow of a moving vortex pair. In our case, such a flow should result from the central source wind with the velocity Uwind. As the torus and wind have dif- ferent densities, the balance condition, as it is easy to as- certain, takes the form 2 2 wind wind ringU Vρ ρ= . (2.2) The fact that both components of a dipole-vortex torus gravitate towards each other should be taken into ac- count too. Using the known result for the attraction of two elec- trically charged rings [6], we may rewrite the gravita- tional force between the two rings with masses aM and bM , with the distance of 2r between them in the form: 3 2 2 ( ) 4 1 a b g GM M r k E k F R kπ Ч Ч = − , where 2 2k R r R= + , E(k) is the elliptic function. If r R= , then 21 1 2 ( )k r R≈ − Ч , 2 21 ( )k r R− ≈ and in this case ( ) (1) 1E k E≈ = . The gravitational force between the two components of a dipole toroidal vortex (for r R= ) takes the form 2 2 ring g GM F R rπ = . (2.3) This attraction will also be balanced by wind flow. Therefore, in the equality (2.2) an additional addend ap- pears: 2 2 2 wind wind ring escU V Vρ ρ ρ= + , (2.4) where 2 (2 )esc ringV GM R= . Below it will be shown that for the numerical parameters chosen, the gravity contri- bution (i.e. the second addend in the right-hand side of equality (2.4)) exceeds the hydrodynamic one and is about of the same order as the radiation twist contribu- tion. Therefore in this work, the wind effect is neglect- ed. At the same time it will be observed that unlike for the “unipolar” self-gravitating vortices, where the envi- ronment is not a governing factor, for the dipole toroidal vortex, according to (2.4), the environment − similar to vortices in an incompressible fluid − is required in prin- ciple. At the same time, a flow generated «lifting force» can explain the existence of «thick» cold tori that caus- es per se a serious problem now [7]. In the luminosity, let us single out the contribution to the accretion disk of matter from a torus and the “background” torus unrelated luminosity L0: 2 0L L Mcξ= + & , (2.5) where M dM dtє& is the accretion rate, and 0.1x : means accretion related energy conversion into radia- tion. The magnitude L will be considered close to the Eddington limit, which is typical of the AGN luminosi- ty. The toroidal vortex luminosity contribution is de- scribed by the second addend connected with the accre- tion disk vortex “twist”. 3. ACCRETION DISK REPLENISHMENT BY VORTEX For the problem considered, the vortex matter inflow into the accretion disk due to partiсle detachment in the region of contact of dipole components is essential. This process is similar to that considered in [3] of the origin of a jet in a compact-vortex hole. This process will be described phenomenologically by introducing the effective «height» h of a belt through which the toroidal vortex matter flows into a disk. Then the mass flow towards the disk per unity of time is equal to 2M v R hϕρ π= Ч Ч& , (3.1) where the vortex density ρ is 22 ring H M m n R r ρ π π =є Ч , (3.2) and the vortex velocity vϕ is expressed through circula- tion Γ as 2 v rϕ π Γ = . (3.3) The particle detachment parameters enter into the ex- pression for the area 2 R hπ Ч through the belt height Fig.3. Schematic of a vortex fed accretion disk. The belt effective height h is amenable to particle intake in a disk which will be taken equal to the torus minor radius part 1h rξ= . (3.4) The major and minor radii relate as [3] r Rλ= , (3.5) where 2 (4 )ringGMλ π= Γ is the Jeans scale. This rela- tion is a direct consequence of coordinate dependencies of gravitational and centrifugal forces connected to a vortical motion in a torus. By substituting (3.2)-(3.5) in ________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5. Серия: Плазменная электроника и новые методы ускорения (5), с.146-151. 147 (3.1) we obtain the accretion rate expression 2 12 ringMG M R ξ π = Γ & . (3.6) The magnitude of M& determines the accretion rate defining the central source luminosity and connected to the replenishment from a toroidal vortex. Generally speaking, by virtue of nonstationarity of the process under investigation, the time delay between the mass intake into a disk at the distance of a torus ma- jor radius R and its “irradiation” in the central engine (i.e. in the disk inner part) may become essential. The effect of this irradiation, as well as of the time lag be- tween the moment of radiation and the vortex twist (due to the light and wind velocity finiteness), will be dis- cussed more below. Now let us substitute the accretion rate expression (3.6) into the luminosity formula (2.5) 22 1 0 2 ringMGc L L R ξ ξ π = + Γ . (3.7) Hence, using the relation of Γ with pφ and taking (3.5) into account yield the following formula for the rate of momentum change (2.1) due to twisting: 0 1 2 2 3 ( ) ( ) 2 2ringtwist dp L c p p dt GM c R ϕ ϕ ϕ π ζ θ ζ θ ξ ξ = + ж ц з ч и ш . (3.8) The torus mass loss in replenishing the disk results, however, in the loss of the momentum carried away by the escaping (pulled inward a disk) mass. The corre- sponding momentum losses are described by 21 2 ring repl dp G M dt R ϕ ξ π = − ж ц з ч и ш . (3.9) Actually, the momentum carried away from the torus per time unit is equal to 2 repl dp v rv Rh dt ϕ ϕ ϕρ π= − Ч Ч ж ц з ч и ш , (3.10) whence follows (3.9). 4. ACCRETION-WIND INSTABILITY Let us first neglect the losses, assuming that the inequality providing the angular momentum growth is fulfilled: twist repl dp dp dt dt ϕ ϕ> ж ц ж ц з ч з ч и ш и ш . (4.1) Nevertheless, the time evolution of inequality depends essentially on how the torus mass ringM varies. If the torus illuminated side subjects to wind and radiation, there is no radiation pressure on its shadowed side and the mass inflow is possible from a more distant environ- ment. In particular, one of the variants of the discussed scenario corresponds to the steady-state mass inflow which allows considering ringM& as one of the slowly varying parameters for the times of “fast” variations. Substitution of (3.8) at 0 0L = and (3.9) in (4.1) yields momentum restriction from below 2 2 4 ( ) ringGM p cϕ π ξ ς θ > . (4.2) The angular momentum which satisfies it on the order of magnitude is equal to 2 ( ) ringGM p cϕ ξ ς θ ∗ ≈ . (4.3) This might be amenable to the fact that the contribution of the “background” addend with 0 0L № into vortex twisting can be of fundamental importance [6]. The ac- cretion rate and luminosity magnitudes corresponding to pϕ ∗ are of the form 2 3 1 1 2 2 ( ) ( ) ,ring ringM c M c M L R R ξ ξ ς θ ξ ξ ς θ π π ∗ ∗= =& . (4.4) The possibility for AGN instability connected both with the accretion from a torus and with the central source wind (the photon wind included) is obvious from (3.8). The nature of such accretion-wind instability, as it could possibly be named, is that the growing L increases pϕ& , while this in turn increases M& , that again increases L, i.e. , ,p L L Mϕ ∝ ∝ && . (4.5) The linear increment of accretion-wind instability at 0 0L = should result in the exponential growth with the slowly rising (due to the decrease of R) parameter α : 1 ( ) , 2 dp c p dt R ϕ ϕ ξ ξ ς θ α α= =Ч . (4.6) The complete analysis of instability may appear rather complicated and is not meant here in this paper. Nevertheless, in its character and behavior the instability is similar to the observable quasar radiation bursts [8] that can testify to the discussed dynamic role of AGN toroidal vortices (see Fig.6 and discussion further in this paper). 5. THE DELAY EFFECT ON THE INCRE- MENT The feedforward and feedback circuit, which causes the accretion-wind instability, has the delay which in the oversimplified case is described by the equation ( ) ( ) dp t p t dt ϕ ϕα τ= − , (5.1) where 1 2τ τ τ= + (see Fig.4). Fig.4. Schematic of time delay in a feedback circuit of accretion-wind instability, where τ1 is the time of mass transfer along the disk radius, τ2 is the time of centre-to- torus radiation propagation 148 The evolutionary differential equation with the time delay ( ) ( ) dx t x t dt α τ= − (5.2) allows the exact solution and results, as earlier in the system with no delay, in the exponentially growing so- lution ( )( ) (0) f tx t x e α α τ− ⋅= ⋅ , (5.3) but with the increment depending on the dimensionless delay α τ , where the universal function f(α τ ) is the solution of the transcendental equation exp( )f fα τ= − or ln /f f α τ= − . (5.4) The form of this function is shown in Fig.5 and is obtained by the inversion of function (5.4). Fig.5. The dependence ( )f α τ obtained as graphic so- lution of the functional equation (5.4) It is seen that 1f Ј (see Fig.5), 1 (1 )f α τ= + for the weak delay 1at = . Thus, the delay present reduces the increment of accretion-wind instability ( )fα α α τ→ Ч . With the vortex compression and thin- to-compact evolution, the delay becomes less important and the increment rises. 6. DISCUSSION The aforesaid proves that in the considered system the positive feedback and related instability are possible. We have considered the instability in its simplest case with least parameters: no background radiation uncon- nected with a toroidal vortex, insignificant wind contri- bution to twisting vs. radiation, rather slow motion (compression) over the torus major radius. Then, ac- cording to (4.7), the accretion-wind instability incre- ment is equal to 1 ( ) (2 )c Rα ξ ξ ς θ= and determines the characteristic time scale of its development. In case we want to compare the 3.5-year time scale of the observ- able burst duration in quasar 3C 345, see Fig.6 from [8], we should take the space scale 1610R : cm (1/300 light year). Here we have taken into account that 0.1x : , and 1ξ is taken of the same infinitesimal order. The last estimation may essentially differ from reality, therefore 1ξ should be sooner treated as a scale factor which vari- ation may considerably change the system parameters. As the preliminary observed data [1] point to signifi- cantly larger torus sizes, a question - which one of the answers results in the “matreshka” scheme (Fig.7) - may naturally arise. The inner toroidal vortex may be respon- sible for the variability of AGN, the development of in- stability, etc. In the shadow of a close minor-radius torus there exists a preference for the centre-falling mat- ter because of less interfering radiation (this latter being weaker due to absorption) and of wind screened by the inner torus. Fig.6. Correlation between the optical bursts of quasars 3C345 and arising the super luminal components of radio jet ( according to [8]) Therefore the interstellar gas clouds will move to- wards the centre in the nearby torus shadow. Fig7. The possible obscuring structure of AGN in the form of the “matreshka” sequence of tori Orbital motion causes the falling clouds to flatten into tori and disks. Though the outer tori cannot add to the development of accretion-wind instability due to this latter extremely slow development at large scales (cf. the estimate (4.7)) and, in addition, being weakened by the increment-slowing delay. Thus, the instability is determined by the inner cen- tre-closest torus. The torus distribution increment is de- termined by the accretion process on the scales consid- erably exceeding those considered here and is beyond the discussed scenario. Detailed studying of the process- es which occur in the evolution of toroidal vortices in the centres of active galaxies is a highly to intricate problem. Nevertheless, it is possible already now distin- guish some features of these processes. Under the near Eddington’s conditions, due to the radiation pressure compensated centre attraction, the evolution of vortices should largely resemble their evolution without the cen- ________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5. Серия: Плазменная электроника и новые методы ускорения (5), с.146-151. 149 tral mass [3]. At the compact vortex phase, the ejection of particles along the torus axis is possible, that might explain the correlation between the quasar optical bursts and the formation of new jet components [8]. The expressions obtained above may allow to esti- mate the features of the outer (obscuring) torus for the Seyfert galaxies (see Table 1) and quasars (see Table 2). Table 1. Obscuring torus parameters for the Seyfert galaxies Model param- eters Chosen values Calculated AGN values Obtained values BHM 76.6 10 MЧ e [9] α 125 10−Ч CGS ringM 0.1 BHMЧ [9] pϕ 643.8 10Ч CGS R 1pc (see [3]) Γ 251.8 10Ч CGS r/R 0.5 (see [10]) vϕ 62 10Ч cm/s ξ 0.1 n 75.4 10Ч cm-3 1ξ ; ς 0.1 2 ringnV 202 10Ч CGS 2 wind windn U 2210 CGS ( 610windn = cm-3, 810windU = cm/s) 2 escnV 217.7 10Ч CGS EddL 458.6 10Ч erg/s *L 481.2 10Ч erg/s (see the text) Table 2. Obscuring torus parameters for the quasars Model parame- ters Chosen values Calculated AGN values Obtained values BHM 910 Me α 125 10−Ч CGS ringM 0.1 BHMЧ pϕ 668.8 10Ч CGS R 1pc Γ 262.8 10Ч CGS r/R 0.5 vϕ 73 10Ч cm/s ξ 0.1 n 91.4 10Ч cm-3 1ξ ; ς 0.1 2 ringnV 236.7 10Ч CGS 2 wind windn U 245 10Ч CGS, [11] 2 escnV 241.8 10Ч CGS EddL 471.3 10Ч erg/s *L 491.8 10Ч erg/s (see the text) Note that in [9] the dust mass of a obscuring torus is estimated on the order of magnitude of 0.01 BHM , where BHM is the central black hole mass. In our estimations we assume the dust making 10% of the total torus mass. The discrepancy between the characteristic L* and Eddington luminosities EddL can be easily eliminated by assuming a smaller efficiency replenishment of the ac- cretion disk by a toroidal vortex. Thus, taking 1 310ξ −= yields 47* 10EddL L: : erg/s for the other parameters unchanged. However, the delay affected decrease of L* may appear to be essential as well. The luminosity L* (4.5) can be represented as 2 2* 2 ringL M cξ α π= , (6.1) where α is the accretion-wind instability increment. As is shown above (item 5), the τ -time delay decreases the increment by a factor of f, where ( )f α τ is the solution of equation (5.4). As a matter of fact, the time delay es- sentiality means that the detail description needs using the theory of a nonstationary disk accretion with the “boundary conditions” determined by the interaction of a toroidal dipole vortex with a disk, that exceeds the bounds of this paper. For the luminosity near to the Eddington one the torus mass ringM have to be near to the value ( )ring cM R Mη= , where ( )Rη is estimated from the relation * 381.3 10 c Edd ML L M ж цчз ч< = Ч з чз чзи шe erg/s, that led to inequality 6 1 1( ) 3.7 10 ( ) 1 RR pc η ξ ς θ − ж ц < Ч з ч и ш . In particu- lar, in the case 210R −= pc for 910cM M= e and 1 0.1ξ ς= = we receive the value 34 10ringM M» ґ e . The decrease of the torus mass with decreasing the torus radius naturally to link with a departure of the mass to the accretion disk and/or with a blowing off the part of the mass under the action of the wind. The torus twisting by wind rather than by radiation 150 may appear essential. In this case, the magnitude 2 wind windUρ will play the role of the pressure on a torus in (2.1). Closing a feedback circuit requires the knowledge about the connection between the wind parameters and the central source luminosity. The magnetic field which impacts the parameters of wind and its angular distribu- tion, and accordingly the torus twisting, can be of im- portance too. Despite of these problems unsolved, the described scheme already now yields the reasonable correspondence with the data observed until recently. A short description of some items of this work is pub- lished in authors’ paper [12]. CONCLUSIONS 1) A dipole toroidal vortex may be an essential AGN-structure element which “replenishes” the accre- tion disk. 2) In the feedback circuit, which includes twisting the vortex by radiation and wind and replenishment of the accretion disk by a vortex, the instability causing the bursts in active nuclei may develop. 3) The presence of a “lifting force” due to wind may allow the existence of a “thick” and cold torus. 4) The “matreshka” scheme of AGN toroidal struc- ture which may explain the evolution effects is pro- posed. This work is partly supported by the Ukraine President grant ГП/Ф8/0051. REFERENCES 1. R. Antonucci. Unified models for active galactic nuclei and quasars // Ann. Rev. Astron. Astrophys. 1993, v.31, p.473-521 2. W. Jaffe, K. Meisenheimer, H.J.A. Rottgering, et al. The central dusty torus in the active nucleus of NGC 1068 // Nature. 2004, v.429, p.47-49. 3. K.Yu. Bliokh, V.M. Kontorovich. On the evolution and gravitational collapse of toroidal vortex // JETP. 2003, v.123, №6, p.1123-1130. . 4. E.Yu. Bannikova, K.Yu. Bliokh, V.M. Kontorovich. The dynamics of self-gravitating toroidal vortex. Wave transformation, coherent structures and turbu- lence. M.: URSS, 2004, p 249-254. 5. G. Lamb. Hydrodynamics. Moscow-Leningrad: “Ogiz – Gostehizdat”, 1947, p.928. 6. B.B. Batygin, I.N. Toptygin. Contemporary elec- tro-dynamics, Part 1. Moscow-Izhevsk: “R & C dyna-mics”, 2003, p.736 (in Russian). 7. J.H. Krolik. Dust-filled Doughnuts in the Space // Nature. 2004, v.429, №1, p.29-30. 8. M.K. Babadzhanyants, E.T. Belokon. The optical manifestation of a superluminal outflow of the quasar 3C345 millisecond radio structure // As- trofizika. 1985, v.23, №3, p.459-471. 9. M. Schartmann, K. Meisenheimer, M. Camenzind, et al. Towards a physical model of dust tori in Ac- tive Galactic Nuclei // astro-ph / 0504105. 10. J.H. Krolik, M.C. Begelman. Molecular tori in seyfert galaxies: feeding monster and hiding it // Astrophys.J. 1988, v.329, №1, p.702-711. 11. S. Mathur, M. Elvis, W. Belinda. Testing Unified X-Ray/Ultraviolet Absorber Models with NGC 5548 // Astrophys. J. 1995, v.452, №1, p.230- 237. 12. E.Yu. Bannikova, V.M. Kontorovich. Toroidal vor- tex as an active galactic nuclei structure element // Radio Physics and Radio Astronomy. 2006, v.11, №1, p.42-48. ДИПОЛЬНЫЕ ТОРОИДАЛЬНЫЕ ВИХРИ И ВЕТРОВО-АКPЕАЦИОННАЯ НЕУСТОЙЧИВОСТЬ В ЯДРЕ АКТИВНОЙ ГАЛАКТИКИ Е.Ю. Банникова, В.М. Конторович Принята концепция тора как неотъемлемая структурная компонента ядра активной галактики (ЯАГ). Здесь обсуждается ситуация, когда «вращающийся» тор благодаря излучению или ветру трансформируется в тороидальный вихрь, который может быть источником вещества, пополняющего акреационный диск. Та- ким образом обсуждено также, что исходная неустойчивость может быть ответственна за вспышки излуче- ния квазаров, сопровождающиеся выбросами вещества. Предложена схема “матрешка” для структуры на- блюдающегося тороидального вихря, которая может объяснить изменчивость и эволюцию ЯАГ. Параметры модели оценены численно для яркости, близкой к Эддингтоновскому пределу и хорошо согласуются с на- блюдениями. ДИПОЛЬНІ ТОРОЇДАЛЬНІ ВИХОРІ ТА ВІТРОВО-АКPЕАЦІЙНА НЕСТІЙКІСТЬ У ЯДРІ АКТИВНОЇ ГАЛАКТИКИ Є.Ю. Банникова, В.М. Конторович Прийнята концепція тора як невід’ємної структурної компоненти ядра активної галактики (ЯАГ). Тут обговорюється ситуація, коли «твістуючий» тор завдяки випромінюванню або вітрові трансформується в тороїдальний вихор, котрий може бути джерелом речовини, що поповнює акреаційний диск. Таким чином обговорено також, що первісна нестійкість може бути відповідальна за спалахи випромінювання квазарів, які супроводжуються викидами речовини. Запропонована схема “матрьошка” для структури тороїдального вихорю, яка може пояснити змінність та еволюцію ЯАГ. Параметри моделі оцінені чисельно для яскравості, близької до Едингтонівської межі та добре узгоджуються зі спостереженнями. ________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5. Серия: Плазменная электроника и новые методы ускорения (5), с.146-151. 151 Obtained values