Regimes with the dynamic chaos in analisis of linear systems

The examples are shown which demonstrate that in the course of analysis of linear systems the modes with dynamic chaos can occur. This can happen when for analysis of linear systems the change of variables is used resulting in the need to investigate either non-linear equations or non-linear functio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Antipov, V.S., Buts, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81209
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Regimes with the dynamic chaos in analisis of linear systems / V.S. Antipov, V.А. Buts // Вопросы атомной науки и техники. — 2014. — № 6. — С. 108-111. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81209
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-812092025-02-05T20:29:07Z Regimes with the dynamic chaos in analisis of linear systems Режимы с динамическим хаосом при анализе динамики линейных систем Режими з динамічним хаосом при аналізі динаміки лінійних систем Antipov, V.S. Buts, V.A. Плазменная электроника The examples are shown which demonstrate that in the course of analysis of linear systems the modes with dynamic chaos can occur. This can happen when for analysis of linear systems the change of variables is used resulting in the need to investigate either non-linear equations or non-linear functions. In the plasma physics field such situation may arise, e.g., when diagnosing some plasma parameters. Приведены примеры, которые показывают, что при анализе динамики линейных систем могут возникать режимы с динамическим хаосом. Это случается, когда для анализа линейных систем используются замены переменных, которые приводят к необходимости исследовать либо нелинейные уравнения, либо нелинейные функции. Для физики плазмы такая ситуация может возникнуть, например, при диагностике параметров плазмы. Наведено приклади, які показують, що при аналізі динаміки лінійних систем можуть виникати режими з динамічним хаосом. Це трапляється, коли для аналізу лінійних систем використовуються заміни змінних, які призводять до необхідності досліджувати, або нелінійні рівняння, або нелінійні функції. Для фізики плазми така ситуація може виникнути, наприклад, при діагностиці параметрів плазми. 2014 Article Regimes with the dynamic chaos in analisis of linear systems / V.S. Antipov, V.А. Buts // Вопросы атомной науки и техники. — 2014. — № 6. — С. 108-111. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 05.45.-a https://nasplib.isofts.kiev.ua/handle/123456789/81209 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Antipov, V.S.
Buts, V.A.
Regimes with the dynamic chaos in analisis of linear systems
Вопросы атомной науки и техники
description The examples are shown which demonstrate that in the course of analysis of linear systems the modes with dynamic chaos can occur. This can happen when for analysis of linear systems the change of variables is used resulting in the need to investigate either non-linear equations or non-linear functions. In the plasma physics field such situation may arise, e.g., when diagnosing some plasma parameters.
format Article
author Antipov, V.S.
Buts, V.A.
author_facet Antipov, V.S.
Buts, V.A.
author_sort Antipov, V.S.
title Regimes with the dynamic chaos in analisis of linear systems
title_short Regimes with the dynamic chaos in analisis of linear systems
title_full Regimes with the dynamic chaos in analisis of linear systems
title_fullStr Regimes with the dynamic chaos in analisis of linear systems
title_full_unstemmed Regimes with the dynamic chaos in analisis of linear systems
title_sort regimes with the dynamic chaos in analisis of linear systems
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Плазменная электроника
url https://nasplib.isofts.kiev.ua/handle/123456789/81209
citation_txt Regimes with the dynamic chaos in analisis of linear systems / V.S. Antipov, V.А. Buts // Вопросы атомной науки и техники. — 2014. — № 6. — С. 108-111. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT antipovvs regimeswiththedynamicchaosinanalisisoflinearsystems
AT butsva regimeswiththedynamicchaosinanalisisoflinearsystems
AT antipovvs režimysdinamičeskimhaosomprianalizedinamikilinejnyhsistem
AT butsva režimysdinamičeskimhaosomprianalizedinamikilinejnyhsistem
AT antipovvs režimizdinamíčnimhaosomprianalízídinamíkilíníjnihsistem
AT butsva režimizdinamíčnimhaosomprianalízídinamíkilíníjnihsistem
first_indexed 2025-11-25T09:36:22Z
last_indexed 2025-11-25T09:36:22Z
_version_ 1849754540864176128
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) 108 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 108-111. REGIMES WITH THE DYNAMIC CHAOS IN ANALISIS OF LINEAR SYSTEMS V.S. Antipov, V.А. Buts National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: vbuts@kipt.kharkov.ua The examples are shown which demonstrate that in the course of analysis of linear systems the modes with dynamic chaos can occur. This can happen when for analysis of linear systems the change of variables is used resulting in the need to investigate either non-linear equations or non-linear functions. In the plasma physics field such situation may arise, e.g., when diagnosing some plasma parameters. PACS: 05.45.-a INTRODUCTION At present time it is generally accepted that the regimes with dynamic chaos appear only in nonlinear systems. In general, this is correct. However, in some cases, when studying the linear systems one can run into the dynamics similar to the dynamics of modes with dynamic chaos. It may seem that this dynamic is not possible. In reality, in many cases such dynamic is quite natural. It can occur, for example, when for the analysis of linear systems the change of variables is necessary, and thus the initial linear system transforms to the one described by a system of nonlinear equations. The well- known examples are the equations of classical mechanics and the equations of geometrical optics. Original for these equations are linear equations of quantum mechanics and Maxwell equations, respectively. In such a case, these new variables can lead to appearance of the modes with dynamic chaos. The change of variables modes to those with dynamic chaos can occur in linear systems if the processing of the results of the linear system dynamics is produced by non-linear characteristics. In our previous works (see, for example, [1-3]), we have illustrated the possibility for such regimes to be realized. This paper presents the results of further studies in this direction. Attention is drawn to the fact that there are two causes of dynamic chaos: (i) an immediate change of variables and (ii) the features of these non- linear equations. The first reason apparently is nonphysical. As an example of the role of the second reason, the dynamics of waves propagating in layered dielectric was considered. The recurrence relations for the coefficients of reflection from and transmission through the layered media weкe found. Thus a non- linear characteristic of the field was inserted. The conditions when this recurrent sequence becomes chaotic have been found too. 1. REPLACEMENT LEADING TO THE CHAOTIC DYNAMICS A convenient characteristic allowing to determine such changes is a measure of "volume" x in the phase space: ( )ip x x . Here ( )ip x is a probability density for the studied dynamical system to get to point ix , that belongs to "volume" x . Let’s assume that substitution ( )iz f x was done in such a way that z is an image and ix is an inverse image of the point z . Principally, there can be many inverse images. The set of vectors ( )iz f x do form a new phase space. We consider in this space the "volume" z ( / 2; / 2z z z z ). By definition, a measure of the magnitude of this volume will be: ( ) ( )z i i i g z z p x x . Here the sum is carried out along the number of inverse images. Then the density of probability of the new phase space is determined by the formula: ( ) ( ) ( ) i i i i i x p x g z p x z J , (1) where det( / )J f x is the Jacobian of transformation. Equation (1) is practically the Perron - Frobenius formula for transformation of probability density when converting the functions. Let’s consider, as an example, the high-usage and most important replacement. Suppose, that we have ,k k kx A A , where k k kA A iA . If one carries out the replacement: expk k k k kA A iA a i , then it is easy to verify that 1/J a . If in initial variables the motion was regular, then ( ) ~ ( ( ))i i ip x x x t . The density of probability for new variables become indeterminate ( ( ) ?g z ) when 0a . It is useful to note that this transformation describes the transition from quantum consideration to classical consideration. In this case the condition 0a may mean that the velocity of particles are going to zero. This fact corresponds to a well-known result that the transition from quantum to classical consideration for particles with zero speed is not correct. Using this simplest example, we will examine where this might lead to. Let the complex variables satisfy the following equations: x y , y x . (2) Then there are two possible replacements. First R Ix x i x , R Iy y i y . In this case, the new mailto:vbuts@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2014. №6(94) 109 dynamics does not arise. But the new dynamics occurs when another replacement is used, namely: 0 2expx x i x , 1 3expy x i x . Here ( ), 0,1,2,3,kx t k are real functions. After substitution these replacement into (2) we will get the system of equations: 0 1 cosx x 1 0 cosx x 0 1 1 0 sin x x x x (3) with 3 2x x Fig. 1. Time dependence of 0x Fig. 2. Time dependence of phase 2x . One can see jumps of phase at the moments when amplitude don’t change sign when passing zero point In addition, it follows from first two equations of the system (6) the existence of the integral: 2 2 0 1x x const . Taking into account this integral, the system of equations (3) has only one degree of freedom. As soon as it gets to the point, for example 0 0x , then the corresponding phase ( 2x ) can be undefined. These features of the dynamics of the amplitude 0x and phase 2x are shown in Figs. 1-3. Fig. 3. Autocorrelation function for 0x variable From Figs. 1, 2 we see that at random time moments the value of 0x does not change its sign and the value of phase undergoes a jump. Similar random phase jumps for 3x are observed when 1 0x . Above we have considered the transformation occuring most frequently in physics, especially in radiophysics. In addition to this transformation, often is used the transformation that transforms the linear equation of second order to the Riccati equation, which is a first order nonlinear equation. It may be expected that the dynamics of such new variables can also be chaotic. We will show that the exchange, which led to the Riccati equation, is equivalent to the one used above. Indeed, suppose we have the equation 2 0x x . By the use of the replacement 0 /x x x for the new variable this linear equation transforms into nonlinear Riccati equation: 2 2 0 0x x , (4) with the relation between initial variable and new variable as: 0 0 ( ) exp( ( ) ) t x t a x t dt If we present 0( )x t in the form 0 ( ) ( )x i t i t , 0Re x , 0( ) Imt x , then the expression for x(t) can be rewritten as: ( ) ( ) exp( ( ))x t A t i t i t , where 0 ( ) exp t A t a dt , a const , 0 ( ) ( ) t t t dt . One can see that this expression is identical to the previous expression. 2. TRANSMISSION OF ELECTROMAGNETIC WAVES THROUGH THE LAYER WITH LAYERED INHOMOGENEITY Now we shall consider the layered media, with layers arranged perpendicular to the axis z with inhomogeneous medium occupying the region 0 z L . For simplicity, it is assumed that there are only two different periodically alternating layers. The dielectric constant of these layers and their thicknesses are equal 0 0 1 1, ; ,d d , respectively. We assume that from the left a homogeneous half- space ( 0z ) a flat monochromatic electromagnetic wave falls on a non-uniform layer. For simplicity, the wave is incident at right angle to the interface. The components of electric and magnetic fields of the wave obey the following equations: x y E ikH z , ( ) y x H ik z E z , 2 2 2 ( ) 0x x E k z E z . (5) We are looking for reflectance and transmittance of the wave through an inhomogeneous layer with the fields in an arbitrary homogeneous layer having the form: ( ) ( )x n n n nE A exp ik z B exp ik z , (6) ( ) ( )y n n n n nH A exp ik z B exp ik z , where k kn - the refractive index of the layer. 110 ISSN 1562-6016. ВАНТ. 2014. №6(94) We use the matrix method (see, e.g., [4, 5]) for determination of the transmission and reflection coefficients. Under this method, the fields at the left and right edges of the layer are connected with each other by the following matrix: x x n y y E E M H H , 11 12 21 22 n a a M a a , (7) where 11 22cos n na k d a ; 12 sin /n n na i k d ; 21 sin n n na i k d ; The connection between fields at the left and right boundaries of the double layer will be determined by the following relation: 1 0 x x y y E E M M H H . (8) The elements of matrix 11 12 0 1 21 22 A A M M M A A are easy to determine: 1 11 0 0 1 1 0 0 1 1 0 cos cos sin sinA k d k d k d k d , 0 22 0 0 1 1 0 0 1 1 1 cos cos sin sinA k d k d k d k d , 12 0 0 1 1 0 0 1 1 1 0 cos sin sin cos i i A k d k d k d k d , 12 1 0 0 1 1 0 0 0 1 1cos sin sin cosA i k d k d i k d k d . If there are N such double layers, the relation between fields at the left ( 0z ) and right ( z L ) boundaries will be expressed by the formula: x xN y y E E M H H . (9) In the general case the matrix NL M looks like a quite complicated one, and its elements could be found only by calculus of approximations. However, in some special cases the elements of the matrix can be strongly simplified, in particular, the elements become much simpler if the layers with identical optical thickness 0 0 1 1k d k d kd , are under consideration. We should pay attention that the matrix nM is a 2х2 matrix, which diagonal elements are real functions and nondiagonal elements are imaginary functions. The matrix M is of a similar structure. It is easy to show that similar structurewill also the transfer matrix, which links the fields at the outer boundaries of the inhomogeneous layer: 11 12 21 22 N l il L M il l . (10) These elements, after some transformations, can be expressed in terms of Chebyshev polynomials of the second kind: 11 11 1 2( ) ( )N Nl A U s U s , 22 22 1 2( ) ( )N Nl A U s U s , 12 12 1( )Nl A U s . Here 11 22 / 2s A A ; ( )NU s - Chebyshev polynomials . Using elements of matrix L it is easy to express transmission and reflection coefficients: 11 22 12 21 2 ( )N N T l l i l l , (11) 11 22 12 21 11 22 12 21 ( ) ( ) N N N N l l i l l R l l i l l . (12) Expressions (11) and (12) can be analyzed by numerical methods. The most informative are energetic reflection coefficients and energetic transmission coefficient, which have been studied. It was shown that there is a range of parameters, where the dependence of these characteristics on the frequency of the incident radiation is irregular. Figs. 4-7 show two typical cases. In the first case (see Figs. 4, 5) parameters of the inhomogeneous layers are chosen so that the dependence of the transmission coefficient on frequency is a regular function. In this case the correlation function oscillates without decreasing the amplitude of the oscillations. However, with increasing the number of layers, this dependence becomes irregular (see Figs. 6, 7), and the amplitude of the correlation function decreases rapidly. Fig .4. Energetic coefficient of the transmission (number of layers is 10). 0 15, 2n n Fig. 5. Autocorrelation function (number of layers is 10). 0 15, 2n n ISSN 1562-6016. ВАНТ. 2014. №6(94) 111 Fig. 6. Energetic coefficient of the transmission (number of layers is 80). 0 15, 2n n Fig. 7. Correlation function (number of layers is 80). 0 15, 2n n CONCLUSIONS Thus, the above presented results do additionally confirm the following main conclusions: when providing the study of linear systems, there is a high probability to encounter the dependences that are inherent in systems with dynamic chaos. This situation arises when for analysis of the dynamics of linear systems variables that are either themselves nonlinear, or obey to non-linear equations are used. In plasma physics, such a situation can be met, for example, in the diagnosis of plasma parameters. REFERENCES 1. V.A. Buts. Chaotic dynamic of linear systems // Electromagnetic waves and electron systems. 2006, v. 11, № 11, p. 65-70. 2. V.A. Buts, A.G. Nerukh, N.N. Ruzhytska, and D.A. Nerukh. Wave Chaotic Behaviour Generated by Linear Systems // Optical and Quantum Electronics. 2008, v. 40, p. 587-601. 3. V.A. Buts. True quantum chaos // Problems of Atomic Science and Technology. Series “Plasma Physics”, 2008, №6 (58), p. 120-123. 4. L.М. Brehovskih. Waves in layered media. Moscow: “Publisher of the Academy of Sciences of the USSR”, 1957, p. 497. 5. Sh.A. Furman, A.V. Tikhonravov. Basics of Optics of Multilayer systems. Paris: “ADAGP”, 1992, р. 242. Article received 25.10.2014 РЕЖИМЫ С ДИНАМИЧЕСКИМ ХАОСОМ ПРИ АНАЛИЗЕ ДИНАМИКИ ЛИНЕЙНЫХ СИСТЕМ В.С. Антипов, В.А. Буц Приведены примеры, которые показывают, что при анализе динамики линейных систем могут возникать режимы с динамическим хаосом. Это случается, когда для анализа линейных систем используются замены переменных, которые приводят к необходимости исследовать либо нелинейные уравнения, либо нелинейные функции. Для физики плазмы такая ситуация может возникнуть, например, при диагностике параметров плазмы. РЕЖИМИ З ДИНАМІЧНИМ ХАОСОМ ПРИ АНАЛІЗІ ДИНАМІКИ ЛІНІЙНИХ СИСТЕМ В.С. Антіпов, В.О. Буц Наведено приклади, які показують, що при аналізі динаміки лінійних систем можуть виникати режими з динамічним хаосом. Це трапляється, коли для аналізу лінійних систем використовуються заміни змінних, які призводять до необхідності досліджувати, або нелінійні рівняння, або нелінійні функції. Для фізики плазми така ситуація може виникнути, наприклад, при діагностиці параметрів плазми.