Обобщение процедуры клиппирования в задачах оптимизации в дискретном пространстве
Исследована возможность применения процедуры клиппирования в задаче оптимизации квадратичного функционала E=(x,Ax). Показано, что непосредственное применение процедуры клиппирования не дает особого выигрыша в ускорении работы алгоритма при поиске глобального минимума. Предложена модификация проце...
Saved in:
| Date: | 2009 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут проблем штучного інтелекту МОН України та НАН України
2009
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/8176 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Обобщение процедуры клиппирования в задачах оптимизации в дискретном пространстве / М.В. Крыжановский, М.Ю. Мальсагов // Штучний інтелект. — 2009. — № 4. — С. 496-503. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Исследована возможность применения процедуры клиппирования в задаче оптимизации квадратичного
функционала E=(x,Ax). Показано, что непосредственное применение процедуры клиппирования не
дает особого выигрыша в ускорении работы алгоритма при поиске глобального минимума. Предложена
модификация процедуры клиппирования с параметром q (число градаций). Показано, что с увеличением
q вероятность совпадения направления градиентов E(x) и его клиппированного аналога Ec(x)=(x,Cx) возрастает до 1.
Досліджено можливість застосування процедури кліпування в задачі оптимізації квадратичного функ-
ционала E=(x,Ax). Показано, що безпосереднє застосування процедури кліпування не дає особливого
виграшу в прискоренні роботи алгоритму при пошуку глобального мінімуму. Запропоновано модифікацію
процедури кліпування з параметром q (число градацій). Показано, що зі збільшенням q можливість спів-
падання напрямку градієнтів E(x) та його кліпованого аналога Ec(x)=(x,Cx) зростає до 1.
Capability of using clipping procedure for problem of optimization quadratic functional E=(x,Ax) was researched.
It is shown application of clipping procedure doesn’t give special benefit in acceleration of global minima
search algorithm. Modification of clipping procedure with parameter q (the number of gradation) was suggested.
It is shown probability of conjunction of gradients directions E(x) and its clipped analogue E(x)=(x,Cx) raise to 1 with increasing of q.
|
|---|---|
| ISSN: | 1561-5359 |