Fast ion generation and its effect on ETB formation in the U-3M torsatron

In the l=3 U-3M torsatron with RF produced and heated plasmas, a two-temperature ion energy distribution arises with a minor group of suprathermal ions. It is shown that a possible mechanism of fast ion generation is cyclotron heating and/or acceleration of ions by a strong RF field in the local A...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Chechkin, V.V., Grigor’eva, L.I., Sorokovoy, E.L., Sorokovoy, Ye.L., Beletskii, A.A., Slavnyj, A.S., Burchenko, P.Ya., Lozin, A.V., Tsybenko, S.A., Litvinov, A.P., Kulaga, A.Ye., Mironov, Yu.K., Romanov, V.S., Kurilo, D.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81773
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fast ion generation and its effect on ETB formation in the U-3M torsatron / V.V. Chechkin, L.I. Grigor’eva, E.L. Sorokovoy, Ye.L. Sorokovoy, A.A. Beletskii, A.S. Slavnyj, P.Ya. Burchenko, A.V. Lozin, S.A. Tsybenko, A.P. Litvinov, A.Ye. Kulaga, Yu.K. Mironov, V.S. Romanov, D.V. Kurilo // Вопросы атомной науки и техники. — 2006. — № 6. — С. 34-36. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81773
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-817732025-02-09T13:59:02Z Fast ion generation and its effect on ETB formation in the U-3M torsatron Генерация быстрых ионов и её влияние на формирование КТБ в торсатроне У-3М Генерація швидких іонів та її вплив на формування КТБ в торсатроні У-3М Chechkin, V.V. Grigor’eva, L.I. Sorokovoy, E.L. Sorokovoy, Ye.L. Beletskii, A.A. Slavnyj, A.S. Burchenko, P.Ya. Lozin, A.V. Tsybenko, S.A. Litvinov, A.P. Kulaga, A.Ye. Mironov, Yu.K. Romanov, V.S. Kurilo, D.V. Magnetic confinement In the l=3 U-3M torsatron with RF produced and heated plasmas, a two-temperature ion energy distribution arises with a minor group of suprathermal ions. It is shown that a possible mechanism of fast ion generation is cyclotron heating and/or acceleration of ions by a strong RF field in the local Alfven resonance layer N|| 2≈ε1 with an additional RF field enhancement due to the coupling resonance. The observed spontaneous ETB formation is preceded by an accumulation of high energy ions in the plasma and synchronized with their burst-like outflow to the divertor. On this basis, it is believed that it is fast ion orbit loss that results in formation of a layer with Er shear and E×B velocity shear accordingly at the plasma boundary, this, in turn, resulting in a damping of turbulence and turbulence-induced anomalous transport. В 3-заходном торсатроне У-3М при ВЧ создании и нагреве плазмы образуется двухтемпературное распределение ионов по энергиям с небольшим количеством сверхтепловых ионов. Вероятным механизмом генерации быстрых ионов являются циклотронный нагрев или ускорение сильным ВЧ полем в слое локального альфвеновского резонанса при дополнительном усилении ВЧ поля вследствие резонанса связи. Спонтанное образование КТБ предваряется накоплением высокоэнергичных ионов в плазме и синхронизуется с их резким выбросом в дивертор. На этом основании считается, что образование на границе плазмы слоя с широм Еr, вызывающим подавление турбулентности и связанного с нею аномального переноса, обусловлено орбитальными потерями быстрых ионов. У 3-західному торсатроні У-3М при ВЧ створенні та нагріві плазми виникає двотемпературний розподіл іонів за енергіями з невеликою кількістю надтеплових іонів. Можливим механізмом генерації швидких іонів є циклотронний нагрів або прискорення сильним ВЧ полем у шарі локального альфвенівського резонансу при додатковому підсиленню ВЧ поля внаслідок резонансу зв’язку. Спонтанне створення КТБ випереджується накопиченням високоенергійних іонів в плазмі і синхронізується з їх різким викидом в дивертор. На цій основі вважається, що створення на границі плазми шару з широм Еr, що викликає придушення турбулентності і пов’язаного с нею аномального переносу, зумовлено орбітальними втратами швидких іонів. 2006 Article Fast ion generation and its effect on ETB formation in the U-3M torsatron / V.V. Chechkin, L.I. Grigor’eva, E.L. Sorokovoy, Ye.L. Sorokovoy, A.A. Beletskii, A.S. Slavnyj, P.Ya. Burchenko, A.V. Lozin, S.A. Tsybenko, A.P. Litvinov, A.Ye. Kulaga, Yu.K. Mironov, V.S. Romanov, D.V. Kurilo // Вопросы атомной науки и техники. — 2006. — № 6. — С. 34-36. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.50.Qt; 52.55.Dy,He https://nasplib.isofts.kiev.ua/handle/123456789/81773 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Chechkin, V.V.
Grigor’eva, L.I.
Sorokovoy, E.L.
Sorokovoy, Ye.L.
Beletskii, A.A.
Slavnyj, A.S.
Burchenko, P.Ya.
Lozin, A.V.
Tsybenko, S.A.
Litvinov, A.P.
Kulaga, A.Ye.
Mironov, Yu.K.
Romanov, V.S.
Kurilo, D.V.
Fast ion generation and its effect on ETB formation in the U-3M torsatron
Вопросы атомной науки и техники
description In the l=3 U-3M torsatron with RF produced and heated plasmas, a two-temperature ion energy distribution arises with a minor group of suprathermal ions. It is shown that a possible mechanism of fast ion generation is cyclotron heating and/or acceleration of ions by a strong RF field in the local Alfven resonance layer N|| 2≈ε1 with an additional RF field enhancement due to the coupling resonance. The observed spontaneous ETB formation is preceded by an accumulation of high energy ions in the plasma and synchronized with their burst-like outflow to the divertor. On this basis, it is believed that it is fast ion orbit loss that results in formation of a layer with Er shear and E×B velocity shear accordingly at the plasma boundary, this, in turn, resulting in a damping of turbulence and turbulence-induced anomalous transport.
format Article
author Chechkin, V.V.
Grigor’eva, L.I.
Sorokovoy, E.L.
Sorokovoy, Ye.L.
Beletskii, A.A.
Slavnyj, A.S.
Burchenko, P.Ya.
Lozin, A.V.
Tsybenko, S.A.
Litvinov, A.P.
Kulaga, A.Ye.
Mironov, Yu.K.
Romanov, V.S.
Kurilo, D.V.
author_facet Chechkin, V.V.
Grigor’eva, L.I.
Sorokovoy, E.L.
Sorokovoy, Ye.L.
Beletskii, A.A.
Slavnyj, A.S.
Burchenko, P.Ya.
Lozin, A.V.
Tsybenko, S.A.
Litvinov, A.P.
Kulaga, A.Ye.
Mironov, Yu.K.
Romanov, V.S.
Kurilo, D.V.
author_sort Chechkin, V.V.
title Fast ion generation and its effect on ETB formation in the U-3M torsatron
title_short Fast ion generation and its effect on ETB formation in the U-3M torsatron
title_full Fast ion generation and its effect on ETB formation in the U-3M torsatron
title_fullStr Fast ion generation and its effect on ETB formation in the U-3M torsatron
title_full_unstemmed Fast ion generation and its effect on ETB formation in the U-3M torsatron
title_sort fast ion generation and its effect on etb formation in the u-3m torsatron
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Magnetic confinement
url https://nasplib.isofts.kiev.ua/handle/123456789/81773
citation_txt Fast ion generation and its effect on ETB formation in the U-3M torsatron / V.V. Chechkin, L.I. Grigor’eva, E.L. Sorokovoy, Ye.L. Sorokovoy, A.A. Beletskii, A.S. Slavnyj, P.Ya. Burchenko, A.V. Lozin, S.A. Tsybenko, A.P. Litvinov, A.Ye. Kulaga, Yu.K. Mironov, V.S. Romanov, D.V. Kurilo // Вопросы атомной науки и техники. — 2006. — № 6. — С. 34-36. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT chechkinvv fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT grigorevali fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT sorokovoyel fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT sorokovoyyel fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT beletskiiaa fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT slavnyjas fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT burchenkopya fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT lozinav fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT tsybenkosa fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT litvinovap fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT kulagaaye fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT mironovyuk fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT romanovvs fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT kurilodv fastiongenerationanditseffectonetbformationintheu3mtorsatron
AT chechkinvv generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT grigorevali generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT sorokovoyel generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT sorokovoyyel generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT beletskiiaa generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT slavnyjas generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT burchenkopya generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT lozinav generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT tsybenkosa generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT litvinovap generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT kulagaaye generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT mironovyuk generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT romanovvs generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT kurilodv generaciâbystryhionovieëvliânienaformirovaniektbvtorsatroneu3m
AT chechkinvv generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT grigorevali generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT sorokovoyel generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT sorokovoyyel generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT beletskiiaa generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT slavnyjas generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT burchenkopya generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT lozinav generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT tsybenkosa generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT litvinovap generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT kulagaaye generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT mironovyuk generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT romanovvs generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
AT kurilodv generacíâšvidkihíonívtaíívplivnaformuvannâktbvtorsatroníu3m
first_indexed 2025-11-26T15:09:52Z
last_indexed 2025-11-26T15:09:52Z
_version_ 1849866109142958080
fulltext FAST ION GENERATION AND ITS EFFECT ON ETB FORMATION IN THE U-3M TORSATRON V.V. Chechkin, L.I. Grigor’eva, E.L. Sorokovoy, Ye.L. Sorokovoy, A.A. Beletskii, A.S. Slavnyj, P.Ya. Burchenko, A.V. Lozin, S.A. Tsybenko, A.P. Litvinov, A.Ye. Kulaga, Yu.K. Mironov, V.S. Romanov, D.V. Kurilo Institute of Plasma Physics, NSC “Kharkov Institute of Physics and Technology”, 061108, Akademicheskaya Str. 1, Kharkov, Ukraine In the l=3 U-3M torsatron with RF produced and heated plasmas, a two-temperature ion energy distribution arises with a minor group of suprathermal ions. It is shown that a possible mechanism of fast ion generation is cyclotron heating and/or acceleration of ions by a strong RF field in the local Alfven resonance layer N|| 2≈ε1 with an additional RF field enhancement due to the coupling resonance. The observed spontaneous ETB formation is preceded by an accumulation of high energy ions in the plasma and synchronized with their burst-like outflow to the divertor. On this basis, it is believed that it is fast ion orbit loss that results in formation of a layer with Er shear and E×B velocity shear accordingly at the plasma boundary, this, in turn, resulting in a damping of turbulence and turbulence-induced anomalous transport. PACS: 52.50.Qt; 52.55.Dy,He 1. INTRODUCTION An appreciable number of ions with energies considerably exceeding the mean thermal energy of the bulk ions can arise in the plasma of stellarator-type devices, including heliotrons/torsatrons (see, e.g., [1,2]). Apart from mechanisms of fast ion generation, studies of their confinement in stellarators is of interest as these particles undergo neoclassical transport in the l.m.f.p. regime, in particular, 1/v regime typical for reactor-scale devices [3]. In a middle-size device, the Uragan-3M (U-3M) torsatron (l=3, m=9, R=1m, a ≈0.12 m, ι( a )≈0.3, Bφ = 0.7 T), with RF produced and heated plasmas, a two- temperature ion distribution in perpendicular energies develops (Ti1~50…80eV, Ti2~250…400eV at en ~1012 cm-3, Te(0)≈600 eV). Also, there is a minor group (<1%) of suprathermal ions (STI) with energies >1000 eV. With this, the hotter ions and STI (hereinafter, fast ions) experience neoclassical diffusion in the 1/v regime (vi ~2× 102 c-1 < 23 tε υTi ι/R). Studies of mechanisms of fast ion generation and of their confinement in U-3M is of specific interest for the following reasons. 1. Alfven waves with ω≲ωci(0) are used for plasma heating. The closeness of ω to ωci and strong radial non- uniformity of the plasma can result in specific mechanisms of wave excitation and absorbtion in the plasma with occurrence of fast particles. 2. An open natural helical divertor is realized in U-3M. Hence, an opportunity is offered to judge on confinement and loss of fast ions by comparing their behaviour in the confinement and divertor regions. 3. A spontaneous transition to the improved confinement regime is observed in U-3M. It is of interest to find out the effect of fast ions on the transition and to compare their confinement in various phases of the transition. 2. FAST ION BEHAVIOUR IN THE CONFINEMENT AND DIVERTOR REGIONS IN VARIOUS PHASES OF DISCHARGE (b) ↓ (a) (d) ↓ ↓ (c)↑ Fig. 1. Time evolution of (a) RF antenna current (envelope); (b) line-averaged electron density, en ; (c) CX neutral flux Гn with perpendicular energy 1350 eV (directed downward); (d) fast ion component (>500 eV) in the divertor flow on the ion ∇B drift side, Ii It is seen in Fig. 1 that the density en passes 3 phases in its evolution over the RF pulse: (1) density rise at the beginning of discharge (~3…4 ms); (2) density decay (tens ms) which is terminated by edge Er bifurcation toward a more negative value and ETB formation [4]; and (3) the H-like mode phase where en stops decaying and even can rise. At the phase (1), the flux Гn (c) exhibits a short-time rise (maximum at 1en ≈1.2×1012 cm-3), indicating a rise of fast ion content in the confinement volume. Synchronously with Гn , a burst of fast ion outflow to the divertor occurs in the phase (1) (d) as indicated by the current Ii to the U= +500 V -biased collector of an electrostatic charged particle energy 34 Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 34-36 0 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1 I i( U )/I i(0 ) retarding voltage, U (Volts) 19.04.06 files (15_14_24) - (15_07_20) 0.68 0.70 0.72 0.74 0 0.4 0.8 1.2 0 1 2 3 4 n e 1 ( 1 01 2 ñ m -3 ) _ m ax I i a t U =5 00 V (a .u .) Bφ (T) 0 1 2 3 4 10 20 30 40 50 60 time, ms 29Mar06 #03724-15_33_55-36 r=10.5 cm; U=500 V n e (1 012 c m -3 ) (c) (a) (b) (d) analyzer mounted in the divertor flow on the ion ∇B drift side. In the phase (2), a repeat Γn rise (c) evidences an improvement of fast ion confinement in this phase. This is consistent with a rise of temperature Ti2 [4] and a current Ii reduction (d). The Γn rise and Ii decay last until the Er bifurcation. With this event the start of Γn drop and a sharp burst of fast ion outflow to the divertor similar to that in phase (1) are synchronized, evidencing a rise of fast ion loss at the start of phase (3). Such a change of confinement regime occurs at the density 2en ≈1.4× 1012 cm-3 which is close to 1en . The relation 1en ≈ 2en ~1012 cm-3 holds independent of RF power and operating gas (hydrogen) pressure provided the bursts of fast ion outflow occur in the phases of density rise and decay. Fig. 2. Ii(0)-normalized ion current Ii versus retarding voltage U plots measured in the Ii maxima in the phases (1) (○) and (2) (●) and at the end of phase (2), before the Ii burst (+) It follows from Fig. 2 that the Ii(U)/Ii(0) plots taken in the Ii maxima in phases (1) and (2) are similar. In both cases, the contribution of ions with energies eU>500 eV amounts 40-50%, while in the phase of en decay where the accumulation of fast ions in the plasma is observed (the rise of Γn) this contribution does not exceed 23%. The closeness of 1en and 2en values and their practical independence on the heating power and operating gas pressure with Bφ fixed suggest an idea that the accumulation of fast ions in the plasma and their burst-like outflow to the divertor are governed by one mechanism and connected with dispersion properties of the plasma column. This suggestion is validated by a resonance character of plots shown in Fig. 3. A possible explanation of these plots is the effect of local Alfven resonance, N|| 2 ≈ ε1 , in an essentially non-uniform plasma resulting in cyclotron heating/acceleration of ions in the thin resonance layer in combination with an additional RF field enhancement due to the coupling resonance between the exciting antenna and plasma column. Note that other plasma parameters also exhibit a resonance Bφ dependence [5,6]. Fig. 3. Density 1en (○)and current Ii in its maximum in phase (1) (●) as functions of Bφ. 3. EDGE POTENTIAL AND ITS FLUCTUATION 1.0×10-12 cm-3 2.4×10-12 cm-3 ↓ ↓ Fig. 4. Time evolution of (a) RF antenna current (envelope), (b) density en , (c) current Ii (U=500 V) and (c) edge floating potential, Vf. Vertical dotted lines indicate 1st and 2nd Vf bifurcations As is seen in Fig. 4, first, a short-time potential increase occurs in phase (1), then it is followed by the above mentioned burst of fast ion outflow to the divertor (maximum at 1en ≈ 1.1×1012 cm-3). Afterwards, a state sets in with a reduced fluctuation level, which is terminated at en ≈ 2.4×1012 cm-3 by the first bifurcational transition toward a higher potential Vf (in the chosen radial location of the Langmuir probe) and a higher fluctuation level. With this, the rise of density is slowed down and an en decay starts (phase (2)) which lasts until the second bifurcation at 2en ≈ 1.0×1012 cm-3 toward a lower potential and a lower fluctuation level. 35 9 10 11 12 0 20 40 60 80 flo at in g po te nt ia l, V f ( V ol ts ) minor radius, r (cm) (a) 9 10 11 12 0 20 40 60 80 flo at in g po te nt ia l, V f ( V ol ts ) minor radius, r (cm) (b) It follows from comparison of Figs 5(a) and 5(b) with Fig. 4 that regimes with a stronger negative Er and Er shear accordingly occur after the burst-like fast ion outflow before the first bifurcation, in phase (1), and after the second bifurcation, in phase (3). In both phases, (1) and (3), a lower level of fluctuation is observed, this, in turn, resulting in reduction of the anomalous transport at the plasma boundary and in observed slowing down of the density decay or even density rise (see, also, [4]). Fig. 5. Equilibrium component of floating potential Vf of a movable Langmuir probe versus minor radius r just before the bifurcation (○) and right after it (●) in the: a) phase (1), b) phase (3) 4. SUMMARY AND DISCUSSION 1. A possible explanation of the effect of fast ion generation could be cyclotron heating and/or acceleration of the ions by a strong RF field arising in the layer of non- uniform plasma where the local Alfven resonance condition, N|| 2≈ε1, is fulfilled in combination with an additional RF field amplification due to the coupling resonance between the exciting antenna and the plasma column. 2. The resonance character (with respect to Bφ and en ) of generation of fast ions and their sharp burst-like outflow to the divertor region (Fig. 3) are combined with indications of transition to an H-like mode (Figs 4,5). In view of these experimental data, a scenario can be suggested where non-ambipolar fast ion orbit loss should be responsible for formation of a layer with an initial small Er shear at the boundary (so-called “ion galo” [7]) in the phase (2). As the number of fast ions increases with the total density decreasing, a critical ion collision frequency is achieved when Er exhibits a hard bifurcational transition to a more negative value [8]. The observed time of potential jump, ≲10 ms, is consistent with a theoretical estimation of the bifurcation time, τtr ~ ε t 2ι2v-1 [9]. A reverse process, i.e., H-L-like transition, takes place at the end of phase (1)-start of phase (2) with an obvious hysteresis by density (Fig. 4) which is typical for hard bifurcational transitions [9]. REFERENCES 1. T. Seki et al. // 15th Int. Stellarator Workshop, Madrid, 2005. Paper IT-21. 2. H. Okada et al. // 15th Int. Stellarator Workshop, Madrid, 2005. Paper P2-26 3. G. Grieger et al. //Phys. Fluids B. 1992, v. 4(7), p. 2081. 4. V.V. Chechkin et al. //Plasma Phys. Control. Fusion. 2006, v. 48, p. A241. 5. N.I. Nazarov et al. // Fizika Plazmy. 1989, v. 15, p. 1027 (in Russian). 6. V.V. Chechkin et al. //Nucl. Fusion. 1996, v.36, p. 133. 7. R.D. Hazeltine //Phys. Fluids B. 1989, v.1, p. 2031. 8. K.S. Shaing and E.C. Crume, Jr. //Phys. Rev. Lett. 1989, v. 63, p. 2369. 9. K. Itoh, S.-I. Itoh //Plasma Phys. Control. Fusion. 1996, v. 38, p. 1. ГЕНЕРАЦИЯ БЫСТРЫХ ИОНОВ И ЕЁ ВЛИЯНИЕ НА ФОРМИРОВАНИЕ КТБ В ТОРСАТРОНЕ У-3М В.В. Чечкин, Л.И. Григорьева, Э.Л. Сороковой, Е.Л. Сороковой, A.A. Белецкий, A.С. Славный, П.Я. Бурченко, A.В. Лозин, С.A. Цыбенко, A.П. Литвинов, A.Е. Kулага, Ю.K. Mиронов, В.С. Рoманов, Д.В. Kурило В 3-заходном торсатроне У-3М при ВЧ создании и нагреве плазмы образуется двухтемпературное распределение ионов по энергиям с небольшим количеством сверхтепловых ионов. Вероятным механизмом генерации быстрых ионов являются циклотронный нагрев или ускорение сильным ВЧ полем в слое локального альфвеновского резонанса при дополнительном усилении ВЧ поля вследствие резонанса связи. Спонтанное образование КТБ предваряется накоплением высокоэнергичных ионов в плазме и синхронизуется с их резким выбросом в дивертор. На этом основании считается, что образование на границе плазмы слоя с широм Еr, вызывающим подавление турбулентности и связанного с нею аномального переноса, обусловлено орбитальными потерями быстрых ионов. ГЕНЕРАЦІЯ ШВИДКИХ ІОНІВ ТА ЇЇ ВПЛИВ НА ФОРМУВАННЯ КТБ В ТОРСАТРОНІ У-3М В.В. Чечкін, Л.І. Григор’єва, Е.Л. Сороковий, Є.Л. Сороковий, О.О. Білецький, О.С. Славний, П.Я. Бурченко, О.В. Лозін, С.A. Цибенко, A.П. Литвинов, A.Є. Kулага, Ю.K. Mиронов, В.С. Рoманов, Д.В. Kурило У 3-західному торсатроні У-3М при ВЧ створенні та нагріві плазми виникає двотемпературний розподіл іонів за енергіями з невеликою кількістю надтеплових іонів. Можливим механізмом генерації швидких іонів є циклотронний нагрів або прискорення сильним ВЧ полем у шарі локального альфвенівського резонансу при додатковому підсиленню ВЧ поля внаслідок резонансу зв’язку. Спонтанне створення КТБ випереджується накопиченням високоенергійних іонів в плазмі і синхронізується з їх різким викидом в дивертор. На цій основі 36 a b вважається, що створення на границі плазми шару з широм Еr, що викликає придушення турбулентності і пов’язаного с нею аномального переносу, зумовлено орбітальними втратами швидких іонів. 37