Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation.
Gespeichert in:
| Datum: | 2006 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/81774 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-81774 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-817742025-02-09T22:08:06Z Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak Развитие электрического потенциала плазмы в центре и на периферии для стелларатора TJ-II и токамака Т-10 Розвиток електричного потенціалу плазми у центрі та на периферії для стеларатора TJ-II та токамака Т-10 Krupnik, L. Zhezhera, A. Melnikov, A. Hidalgo, C. Alonso, A. Chmyga, A. Eliseev, L. Komarov, A. Kozachok, A. Lysenko, S. de Pablos, J.L. Perfilov, S. Magnetic confinement In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation. Представлены основные результаты исследований электрического потенциала плазмы, полученного на стеллараторе/торсатроне TJ-II и токамаке Т-10 при идентичных режимах работы установок. Представлено основні результати досліджень електричного потенціалу плазми, одержаного на стелараторі/торсатроні TJ-II та на токамаці Т-10 при ідентичних режимах роботи пристроїв The work is supported by grants: RFBR 05-02-17016, NSh-2264.2006.2, INTAS 1000008-8046 and NWORFBR 047.016.015. 2006 Article Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.70 Nc https://nasplib.isofts.kiev.ua/handle/123456789/81774 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Magnetic confinement Magnetic confinement |
| spellingShingle |
Magnetic confinement Magnetic confinement Krupnik, L. Zhezhera, A. Melnikov, A. Hidalgo, C. Alonso, A. Chmyga, A. Eliseev, L. Komarov, A. Kozachok, A. Lysenko, S. de Pablos, J.L. Perfilov, S. Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak Вопросы атомной науки и техники |
| description |
In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak
T-10 in a comparable regimes of device operation. |
| format |
Article |
| author |
Krupnik, L. Zhezhera, A. Melnikov, A. Hidalgo, C. Alonso, A. Chmyga, A. Eliseev, L. Komarov, A. Kozachok, A. Lysenko, S. de Pablos, J.L. Perfilov, S. |
| author_facet |
Krupnik, L. Zhezhera, A. Melnikov, A. Hidalgo, C. Alonso, A. Chmyga, A. Eliseev, L. Komarov, A. Kozachok, A. Lysenko, S. de Pablos, J.L. Perfilov, S. |
| author_sort |
Krupnik, L. |
| title |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak |
| title_short |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak |
| title_full |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak |
| title_fullStr |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak |
| title_full_unstemmed |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak |
| title_sort |
plasma electric potential evolution at the core and edge of the tj-ii stellarator and t-10 tokamak |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2006 |
| topic_facet |
Magnetic confinement |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/81774 |
| citation_txt |
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT krupnikl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT zhezheraa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT melnikova plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT hidalgoc plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT alonsoa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT chmygaa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT eliseevl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT komarova plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT kozachoka plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT lysenkos plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT depablosjl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT perfilovs plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak AT krupnikl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT zhezheraa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT melnikova razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT hidalgoc razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT alonsoa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT chmygaa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT eliseevl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT komarova razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT kozachoka razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT lysenkos razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT depablosjl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT perfilovs razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10 AT krupnikl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT zhezheraa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT melnikova rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT hidalgoc rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT alonsoa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT chmygaa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT eliseevl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT komarova rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT kozachoka rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT lysenkos rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT depablosjl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 AT perfilovs rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10 |
| first_indexed |
2025-12-01T08:00:47Z |
| last_indexed |
2025-12-01T08:00:47Z |
| _version_ |
1850292123593605120 |
| fulltext |
PLASMA ELECTRIC POTENTIAL EVOLUTION AT THE CORE
AND EDGE OF THE TJ-II STELLARATOR AND T-10 TOKAMAK
L. Krupnik, A. Zhezhera, A. Melnikov 1, C. Hidalgo 2, A. Alonso 2, A. Chmyga, L. Eliseev 1,
A. Komarov, A. Kozachok, S. Lysenko 1, J.L. de Pablos 2, S. Perfilov 1
Institute of Plasma Physics, NSC KIPT, Kharkov, Ukraine, e-mail: Krupnik@kipt.kharkov.ua;
1Institute of Nuclear Fusion, RRC Kurchatov Institute, Moscow, Russia,
e-mail: melnik@nfi.kiae.ru;
2 Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain,
e-mail: Carlos.hidalgo@ciemat.es
In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak
T-10 in a comparable regimes of device operation.
PACS: 52.70 Nc
1. INTRODUCTION
The discovery of the high confinement modes (H-
mode) in ASDEX [1] initiated the interest to
understanding the important role of the electric fields in
confinement of toroidal plasmas both of tokamaks and
stellarators The L/H transition was explained by a
spontaneous bifurcation of the radial electric field, Er, in
the edge of the toroidal plasmas., which indicates the
important role of Er in the transition phenomena. It
was also found that the external plasma polarization
(biasing) could induce the L-H transition.
Taking into account that role of the electric fields in the
neoclassical conception of plasma confinement for
tokamaks and stellarator is not identical, and drawing
attention to recent experimental investigations on similar
behavior of electric fields in different effects (regimes) of
tokamaks and stellarators we can assert that comparative
examinations of the electric fields in these devices are
rather actual task.
In this article same results are presented on behavior of
plasma electric potential in stellarator TJ-II and tokamak
T-10 in comparable regimes of device operation. Both
machines were equipped with systems of ECR heating and
a Heavy Ion Beam Probing diagnostic (HIBP). The main
aim of HIBP installation was to investigare the radial
electric field and its fluctuation in the plasma core as well
as at the periphery [2].
2. MAIN PRINCIPLES OF THE HIBP
Heavy Ion Beam Probe (HIBP) is effective method to
measure the poloidal profile of the electric potential and
density of plasma [1]. When the beam of high-energy
single charged ions passes through the plasma, some of
the beam ions ionize, predominantly by the electrons. The
ionization takes place along the full path of the beam in
the plasma (Fig. 1). Because of their higher charge state, a
the secondary ions deviate from the primary beam and
form a broad fan of ions leaving the plasma. The
secondary ions that enter the detector small part of the
primary beam in the plasma, called the sample volume,
which has typical dimensions of (0.5…1) cm3. The
difference between the secondary ions leaving the plasma
and the primary ions is equal to the electric potential ϕ, at
the sample volume. The intensity of the secondary beam
reflects the electron density, ne ,in the sample volume.
Fig. 1. Basic principles
The toroidal velocity of the secondary beam in the
detector reflects the poloidal component of magnetic
vector potential (poloidal magnetic field or plasma current
density. The position of the sample volume can be rapidly
changed by redirecting the probing beam with
electrostatic sweep plates or by changing the energy of
the primary particles. HIBP has a continuous character of
the signal, which provides a high temporal resolution,
limited by the acquisition electronic.
3. J-II AND T-10 DEVICES
TJ-II is a four periods heliac with parameters:
B(0)<1.2T, R=1.5m, a = 0.22 m, transform
range (0.9 < i(0)/2n <2.2). TJ-II plasmas have been
produced and heated with ECRH (2 gyrotrons, 300kW
each, 53.2 GHz, 2nd harmonic.). The last mirror of the
quasi-optical microwave transmission line is located inside
the vacuum vessel and allows for current drive up to 1 kA.
The HIBP diagnostic used Cs+ ions with beam energy up
to 140keV. Observed interval was -1≤ρ≤+1, where ρ is the
normalized minor radius. [3].
T-10 Tokamak (R = 1.5 m, a = 0.3 m) with BT= 2.12…
2.5T, Ipl =180…260 kA, <ne> ~ (1.5… 2.5)x1019m-3. The
Ohmic and ECR heated plasmas, using two frequencies
were 22 m that can explore a wide rotational studied, P <
1…2 MW, fECRH =129…144 GHz. To probe the plasma
core, Tl+ ions were accelerated up to 250 keV. For BT =
Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 37-40 37
mailto:Hcarlos.hidalgo@ciemat.es
2.12 T, the observed radial range was approximately
13…20 cm [4].
The edge plasma potential profile was investigated at
the low field side within the radial interval of 25…30 cm
The plasma was limited by the movable rail limiter at
alim = 27…30 cm, and the circular limiter at ac lim = 33 cm.
4. THE LINK BETWEEN THE PLASMA
POTENTIAL AND ECRH POWER
ECRH modulation experiments in TJ-II
In the experiments presented below the impact of ECRH
heating power on plasma potential profiles has been
investigated. In the present experimental set-up, one gyrotron
line (LI) provides a continuous heating (200 kW) whereas the
second line (L2) is modulated with 100 ms period. Fig. 2 (a)
shows the time evolution of heating power (L2), and plasma
average density. Plasma potential and secondary total current
profiles are presented in Fig.2 (b,c).
a
b
c
Fig. 2. Time evolution of ECR modulation and radial
profiles ϕ and Itot in max and min of time modulation
The total plasma density decreases as ECRH power
increases, whereas plasma potential become more
positive[5]. Interestingly, that density profiles become
more hollow. This behavior can be a manifestation (or at
least is consistent) of the outward particle flux induced
by ECRH ( the pump-of effect). In addition, ECRH
power modulation experiments have proven to be a
powerful method to investigate the transport
properties in fusion plasmas. As expected, the induced
perturbation is much higher in the plasma potential than
in the plasma density.
Ohmic and ECR heated plasmas in T-10
In the Ohmic phase of the discharge the plasma potential
in the observed region was negative. The slope of the
potential profile allows us to estimate the mean radial
electric field in a range of Er = -80…-150 V/cm. In the
ECR heated plasmas with on- and off-axis power
deposition, the depth of the potential well becomes
significantly smaller. The estimation of the mean radial
electric field gives a range of Er=-20…-50 V/cm. The
potential follows by the electron temperature, getting the
additional value up to + 400 V, still remaining negative
(Fig. 3.) The characteristic time of the potential evolution
is ~ 50ms, higher than energy confinement time.
500 600 700 800 900
0
100
200
300
400
0,10
0,15
0,20
∆
ϕ,
V
r
~
2
0
c
m
t, ms
#40202 B = 2.33T I = 180kA
T
e
,
a
.u
.,
E
C
E
0
5
,
2
0
c
m
Fig. 3. Core potential evolution ( squares) with Te
variations under ECRH
In the Ohmic phase, the negative plasma potential
was observed also at the edge (Fig. 4). The gradient part
of the profile takes place inside the LCMS (25<r< 30 cm).
The HIBP potential profile has zero reference value at the
rail limiter position ar lim = 30 cm. The slope of the
potential profile gives the estimation of the mean radial
electric field in a range of Er = - 50…- 100 V/cm. Again,
in the ECRH phase with on- and off- axis power
deposition the potential well becomes significantly
slower[6]. The estimated mean radial electric field was in
a range of Er =- 10…-30 V/cm.
-2000 -1000 0 1000 2000 3000 4000
-350
-300
-250
-200
-150
-100
-50
0
50
100
150
25 cm30 - 29 cm
ϕ,
V
Uscan, V
t582
t602
t623
t643
t664
t684
t705
Fig. 4. Edge plasma potential profiles in OH (t582,
down) and ECRH (t684, up) heating
The clear link between the core plasma potential and
ECRH power was observed: the stronger power leads to
the higher (more positive) absolute potential. . This is
right either for the core plasma or for the edge. Similar
tendency was also found in TJ-II stellarator during
experiments with ECRH power modulation.
5. DEPENDENCE OF POTENTIAL ON THE
ELECTRON DENSITY
The Plasma potential evolution shows the link of the potential
value with density on both devices[5]. The core plasma potential
on TJ-II decreases as plasma density increases Fig. 5.
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-600
-400
-200
0
200
400
600
800
1000
1200
1400
1600
1800
#13668#13501
#13542 time drift corr#13542
#13542
#13543
ϕ,
V
Dens
#13536
Fig. 5 The dependence of potential on density
During the C-pellet injection on T-10, the edge
potential falls down to -100V with the density rise. The
38
mean value of the negative electric field become stronger
up to Er = -120 V/cm (Fig. 6). Generally, the higher the
density the lower the plasma potential.
25 26 27 28 29 30
-300
-200
-100
0
100
200
ECRH off-axis
C-pellet
ϕ,
V
r, cm
t489
t510
t632
t653
t694
t714
t869
t890
#40823
ECRH on+off axis
OH
Fig. 6. Potential profile before and after C-pellet injection
6. PERIPHERY PLASMA PROFILE
EVOLUTION WITH CHANGING LIMITER
POSITION
An overlapping of the HIBP bulk potential profile and
the Langmuir probe edge potential is an important issue in
hifted together with the rail limiter position, studies of the
periphery plasma. The edge plasma potential profile was
investigated by HIBP of the T-10 tokamak within the
radial interval of (0.85 < r/a < 1)[6]. The insertion of the
rail limiter into alim = 27cm leads to the modification of
the plasma profiles (Fig. 7).
The HIBP potential profiles have the absolute reference
at the plasma potential value of Langmuir probe, located at
rail limiter. The potential profile was shifted together with the
rail limiter position, while its shape remains similarto the
initial one. In limiter shadow, 27<r<30cm, the potential
variationis small within the experimental accuracy The
density profile show the increase of the gradient when limiter
is inserted at alim=27 cm. To verify the link between the
position of LCMS and the edge potential profile the
experiment with shift of the plasma column during one shot
was done (Fig. 8).
2000 3000 4000 5000 6000
-250
-200
-150
-100
-50
0
50
100
0
500
1000
1500
2000
2500
3000
#40919, #40920,
#40922, #40925
a
lim
= 30 cm
ϕ,
V
Uscan, V
#40912, #40913, #40914
alim = 27 cmLangmuir
probe data
It
o
t
~30 cm 25 cm27 cm
Fig. 7. Profiles of theϕ and Itot for alim = 27 and
alim = 30 cm . The gradient region of the potential
profile moves with limiter position
3000 3500 4000 4500 5000 5500
-100
-50
0
50
100
150
ϕ,
V
Uscan, V28 cm 26 cm
Fig. 8. Potential profiles with shifting of the plasma
The gradient part of the potential moves with LCMS
position. Secondary beam current profile is also shifted
accordingly.
The plasma edge profiles evolution with limiter
position in TJ-II is shown in Fig. 9.
0,2 0,4 0,6 0,8 1,0
-200
-100
0
100
200
300
400
500
600
0
1
2
3
4
ϕ,
V
U
scan
, V
...#13573
I to
t
_#13560
Fig.9. Plasma edge profiles evolution in TJ-II
Plasma density is more sensitive to the limiter
insertion while plasma potential remains almost
unchanged. In the TJ-II the sign of the edge potential has
a clear dependence on density. The negative plasma
potential was observed by Langmuir probes, and HIBP
when ne is above some threshold.. The both diagnostics
are demonstrated the same tendency: the higher density
- the lower the plasma potential[7].
7. HIBP MEASUREMENTS IN BIASING
EXPERIMENTS
In TJ-II (limiter biasing) have shown the first
experimental example of the possibility of charging
potential of the plasma column as a whole[8] with plasma
response about 10…100 µs, Fig. 10. Both edge and core
plasma potential are affected by limiter biasing.
Fig.10. Plasma potential evolution with negative biasing
(lower curve ) and without biasing
For T-10, in contrast to TJ-II experiments, the electric
field is modified mainly in the proximity of the biased
electrode (with Ubias) Fig. 11.
But, in spite of the important differences in the
magnetic configurations and experimental conditions
between two machines, the basic features of the HIBP
data show same similarities: the potential response ∆ϕpl
has the same polarity and scale as Ubias and the
fluctuations are suppressed near electrode (T-10) / limiter
(TJ-II).
39
Fig.11.The plasma extra potential∇ϕ and Itot profiles
evolution by negative electrode biasing on T-10
CONCLUSIONS
The evolution of the electric potential in a wide range
of regimes with ECR heating using upgraded Heavy Ion
Beam Probing diagnostic in T-10 and TJ-II is described.
Comparison of the plasma potential behavior in both
devices was shown the clear link between the core
plasma potential and ECRH power: the stronger power
leads to the higher (more positive) absolute potential.
On the T-10 tokamak the electric potential follows the
electron temperature in similar way as was found on
stellarator TJ-II.
The potential in the plasma core and edge is linked with
plasma density in both machines.: the higher density – the
lower plasma potential.. The negative plasma potential
was observed when ne is above some threshold value.
It is possible to modify global confinement and
plasma parameters with biasing, illustrating the direct
impact of the radial electric fields on stellarator and
tokamak confinement properties.
ACKNOWLEDGEMENT
The work is supported by grants: RFBR 05-02-17016,
NSh-2264.2006.2, INTAS 1000008-8046 and NWO-
RFBR 047.016.015.
REFERENCES
1. F. Wagner et al. // Phys. Rev. Lett. 1982, v. 49, p.1408.
2. IEEE Trans. on Plasma Science, Special Issue. 1994,
v. 22, N4.
3. I.Bondarenko et al. // Rev. Sci. Instrum. 2001, v.72,
N1, p.583.
4. D.A. Kislov and T-10 Team // Nuclear Fusion. 2001,
v. 41, p.1473.
5. A, Melnikov et al. // Chech. J. of Phys. 2005, v.55,
N12, p. 1569.
6. L. Eliseev et al.// 32 ERS Conf. on Plasm Phys. and
Contr. Fus. 2005, ECA 29C, P-2.018.
7. A. Melnikov et al.// Fusion Science and Technology.
2007, v. 51, N1, p.31-37.
8. A. Melnikov et al.// Fusion Science and Technology.
2004, v.46, N2, p. 299.
РАЗВИТИЕ ЭЛЕКТРИЧЕСКОГО ПОТЕНЦИАЛА ПЛАЗМЫ В ЦЕНТРЕ И НА ПЕРИФЕРИИ ДЛЯ
СТЕЛЛАРАТОРА TJ-II И ТОКАМАКА Т-10
Л. Крупник, А. Жежера, А. Мельников, К. Идальго, А. Алонсо, А. Чмыга, Л. Елисеев, А. Комаров,
А. Козачек, С. Лысенко, И.Л. де Паблос, С. Перфилов
Представлены основные результаты исследований электрического потенциала плазми, полученного на
стеллараторе/торсатроне TJ-II и токамаке Т-10 при идентичных режимах работы установок.
РОЗВИТОК ЕЛЕКТРИЧНОГО ПОТЕНЦІАЛУ ПЛАЗМИ У ЦЕНТРІ ТА НА ПЕРИФЕРІЇ ДЛЯ
СТЕЛАРАТОРА TJ-II ТА ТОКАМАКА Т-10
Л. Крупник, О. Жежера, O. Мельников, К. Ідальго, А. Алонсо, O. Чмига, Л. Єлісєєв, O. Комаров, O. Козачок,
С. Лисенко, І.Л. де Паблос, С. Перфілов
Представлено основні результати досліджень електричного потенціалу плазми, одержаного на
стелараторі/торсатроні TJ-II та на токамаці Т-10 при ідентичних режимах роботи пристроїв.
40
|