Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak

In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation.

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Krupnik, L., Zhezhera, A., Melnikov, A., Hidalgo, C., Alonso, A., Chmyga, A., Eliseev, L., Komarov, A., Kozachok, A., Lysenko, S., de Pablos, J.L., Perfilov, S.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/81774
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81774
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-817742025-02-09T22:08:06Z Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak Развитие электрического потенциала плазмы в центре и на периферии для стелларатора TJ-II и токамака Т-10 Розвиток електричного потенціалу плазми у центрі та на периферії для стеларатора TJ-II та токамака Т-10 Krupnik, L. Zhezhera, A. Melnikov, A. Hidalgo, C. Alonso, A. Chmyga, A. Eliseev, L. Komarov, A. Kozachok, A. Lysenko, S. de Pablos, J.L. Perfilov, S. Magnetic confinement In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation. Представлены основные результаты исследований электрического потенциала плазмы, полученного на стеллараторе/торсатроне TJ-II и токамаке Т-10 при идентичных режимах работы установок. Представлено основні результати досліджень електричного потенціалу плазми, одержаного на стелараторі/торсатроні TJ-II та на токамаці Т-10 при ідентичних режимах роботи пристроїв The work is supported by grants: RFBR 05-02-17016, NSh-2264.2006.2, INTAS 1000008-8046 and NWORFBR 047.016.015. 2006 Article Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.70 Nc https://nasplib.isofts.kiev.ua/handle/123456789/81774 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Krupnik, L.
Zhezhera, A.
Melnikov, A.
Hidalgo, C.
Alonso, A.
Chmyga, A.
Eliseev, L.
Komarov, A.
Kozachok, A.
Lysenko, S.
de Pablos, J.L.
Perfilov, S.
Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
Вопросы атомной науки и техники
description In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation.
format Article
author Krupnik, L.
Zhezhera, A.
Melnikov, A.
Hidalgo, C.
Alonso, A.
Chmyga, A.
Eliseev, L.
Komarov, A.
Kozachok, A.
Lysenko, S.
de Pablos, J.L.
Perfilov, S.
author_facet Krupnik, L.
Zhezhera, A.
Melnikov, A.
Hidalgo, C.
Alonso, A.
Chmyga, A.
Eliseev, L.
Komarov, A.
Kozachok, A.
Lysenko, S.
de Pablos, J.L.
Perfilov, S.
author_sort Krupnik, L.
title Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
title_short Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
title_full Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
title_fullStr Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
title_full_unstemmed Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak
title_sort plasma electric potential evolution at the core and edge of the tj-ii stellarator and t-10 tokamak
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Magnetic confinement
url https://nasplib.isofts.kiev.ua/handle/123456789/81774
citation_txt Plasma electric potential evolution at the core and edge of the TJ-II stellarator and T-10 tokamak / L. Krupnik, A. Zhezhera, A. Melnikov, C. Hidalgo, A. Alonso, A. Chmyga, L. Eliseev, A. Komarov, A. Kozachok, S. Lysenko, J.L. de Pablos , S. Perfilov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 37-40. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT krupnikl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT zhezheraa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT melnikova plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT hidalgoc plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT alonsoa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT chmygaa plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT eliseevl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT komarova plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT kozachoka plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT lysenkos plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT depablosjl plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT perfilovs plasmaelectricpotentialevolutionatthecoreandedgeofthetjiistellaratorandt10tokamak
AT krupnikl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT zhezheraa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT melnikova razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT hidalgoc razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT alonsoa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT chmygaa razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT eliseevl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT komarova razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT kozachoka razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT lysenkos razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT depablosjl razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT perfilovs razvitieélektričeskogopotencialaplazmyvcentreinaperiferiidlâstellaratoratjiiitokamakat10
AT krupnikl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT zhezheraa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT melnikova rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT hidalgoc rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT alonsoa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT chmygaa rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT eliseevl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT komarova rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT kozachoka rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT lysenkos rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT depablosjl rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
AT perfilovs rozvitokelektričnogopotencíaluplazmiucentrítanaperiferíídlâstelaratoratjiitatokamakat10
first_indexed 2025-12-01T08:00:47Z
last_indexed 2025-12-01T08:00:47Z
_version_ 1850292123593605120
fulltext PLASMA ELECTRIC POTENTIAL EVOLUTION AT THE CORE AND EDGE OF THE TJ-II STELLARATOR AND T-10 TOKAMAK L. Krupnik, A. Zhezhera, A. Melnikov 1, C. Hidalgo 2, A. Alonso 2, A. Chmyga, L. Eliseev 1, A. Komarov, A. Kozachok, S. Lysenko 1, J.L. de Pablos 2, S. Perfilov 1 Institute of Plasma Physics, NSC KIPT, Kharkov, Ukraine, e-mail: Krupnik@kipt.kharkov.ua; 1Institute of Nuclear Fusion, RRC Kurchatov Institute, Moscow, Russia, e-mail: melnik@nfi.kiae.ru; 2 Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain, e-mail: Carlos.hidalgo@ciemat.es In this article are presented main results on electric potential investigations in stellarator/torsatron TJ-II and tokamak T-10 in a comparable regimes of device operation. PACS: 52.70 Nc 1. INTRODUCTION The discovery of the high confinement modes (H- mode) in ASDEX [1] initiated the interest to understanding the important role of the electric fields in confinement of toroidal plasmas both of tokamaks and stellarators The L/H transition was explained by a spontaneous bifurcation of the radial electric field, Er, in the edge of the toroidal plasmas., which indicates the important role of Er in the transition phenomena. It was also found that the external plasma polarization (biasing) could induce the L-H transition. Taking into account that role of the electric fields in the neoclassical conception of plasma confinement for tokamaks and stellarator is not identical, and drawing attention to recent experimental investigations on similar behavior of electric fields in different effects (regimes) of tokamaks and stellarators we can assert that comparative examinations of the electric fields in these devices are rather actual task. In this article same results are presented on behavior of plasma electric potential in stellarator TJ-II and tokamak T-10 in comparable regimes of device operation. Both machines were equipped with systems of ECR heating and a Heavy Ion Beam Probing diagnostic (HIBP). The main aim of HIBP installation was to investigare the radial electric field and its fluctuation in the plasma core as well as at the periphery [2]. 2. MAIN PRINCIPLES OF THE HIBP Heavy Ion Beam Probe (HIBP) is effective method to measure the poloidal profile of the electric potential and density of plasma [1]. When the beam of high-energy single charged ions passes through the plasma, some of the beam ions ionize, predominantly by the electrons. The ionization takes place along the full path of the beam in the plasma (Fig. 1). Because of their higher charge state, a the secondary ions deviate from the primary beam and form a broad fan of ions leaving the plasma. The secondary ions that enter the detector small part of the primary beam in the plasma, called the sample volume, which has typical dimensions of (0.5…1) cm3. The difference between the secondary ions leaving the plasma and the primary ions is equal to the electric potential ϕ, at the sample volume. The intensity of the secondary beam reflects the electron density, ne ,in the sample volume. Fig. 1. Basic principles The toroidal velocity of the secondary beam in the detector reflects the poloidal component of magnetic vector potential (poloidal magnetic field or plasma current density. The position of the sample volume can be rapidly changed by redirecting the probing beam with electrostatic sweep plates or by changing the energy of the primary particles. HIBP has a continuous character of the signal, which provides a high temporal resolution, limited by the acquisition electronic. 3. J-II AND T-10 DEVICES TJ-II is a four periods heliac with parameters: B(0)<1.2T, R=1.5m, a = 0.22 m, transform range (0.9 < i(0)/2n <2.2). TJ-II plasmas have been produced and heated with ECRH (2 gyrotrons, 300kW each, 53.2 GHz, 2nd harmonic.). The last mirror of the quasi-optical microwave transmission line is located inside the vacuum vessel and allows for current drive up to 1 kA. The HIBP diagnostic used Cs+ ions with beam energy up to 140keV. Observed interval was -1≤ρ≤+1, where ρ is the normalized minor radius. [3]. T-10 Tokamak (R = 1.5 m, a = 0.3 m) with BT= 2.12… 2.5T, Ipl =180…260 kA, <ne> ~ (1.5… 2.5)x1019m-3. The Ohmic and ECR heated plasmas, using two frequencies were 22 m that can explore a wide rotational studied, P < 1…2 MW, fECRH =129…144 GHz. To probe the plasma core, Tl+ ions were accelerated up to 250 keV. For BT = Problems of Atomic Science and Technology. 2006, № 6. Series: Plasma Physics (12), p. 37-40 37 mailto:Hcarlos.hidalgo@ciemat.es 2.12 T, the observed radial range was approximately 13…20 cm [4]. The edge plasma potential profile was investigated at the low field side within the radial interval of 25…30 cm The plasma was limited by the movable rail limiter at alim = 27…30 cm, and the circular limiter at ac lim = 33 cm. 4. THE LINK BETWEEN THE PLASMA POTENTIAL AND ECRH POWER ECRH modulation experiments in TJ-II In the experiments presented below the impact of ECRH heating power on plasma potential profiles has been investigated. In the present experimental set-up, one gyrotron line (LI) provides a continuous heating (200 kW) whereas the second line (L2) is modulated with 100 ms period. Fig. 2 (a) shows the time evolution of heating power (L2), and plasma average density. Plasma potential and secondary total current profiles are presented in Fig.2 (b,c). a b c Fig. 2. Time evolution of ECR modulation and radial profiles ϕ and Itot in max and min of time modulation The total plasma density decreases as ECRH power increases, whereas plasma potential become more positive[5]. Interestingly, that density profiles become more hollow. This behavior can be a manifestation (or at least is consistent) of the outward particle flux induced by ECRH ( the pump-of effect). In addition, ECRH power modulation experiments have proven to be a powerful method to investigate the transport properties in fusion plasmas. As expected, the induced perturbation is much higher in the plasma potential than in the plasma density. Ohmic and ECR heated plasmas in T-10 In the Ohmic phase of the discharge the plasma potential in the observed region was negative. The slope of the potential profile allows us to estimate the mean radial electric field in a range of Er = -80…-150 V/cm. In the ECR heated plasmas with on- and off-axis power deposition, the depth of the potential well becomes significantly smaller. The estimation of the mean radial electric field gives a range of Er=-20…-50 V/cm. The potential follows by the electron temperature, getting the additional value up to + 400 V, still remaining negative (Fig. 3.) The characteristic time of the potential evolution is ~ 50ms, higher than energy confinement time. 500 600 700 800 900 0 100 200 300 400 0,10 0,15 0,20 ∆ ϕ, V r ~ 2 0 c m t, ms #40202 B = 2.33T I = 180kA T e , a .u ., E C E 0 5 , 2 0 c m Fig. 3. Core potential evolution ( squares) with Te variations under ECRH In the Ohmic phase, the negative plasma potential was observed also at the edge (Fig. 4). The gradient part of the profile takes place inside the LCMS (25<r< 30 cm). The HIBP potential profile has zero reference value at the rail limiter position ar lim = 30 cm. The slope of the potential profile gives the estimation of the mean radial electric field in a range of Er = - 50…- 100 V/cm. Again, in the ECRH phase with on- and off- axis power deposition the potential well becomes significantly slower[6]. The estimated mean radial electric field was in a range of Er =- 10…-30 V/cm. -2000 -1000 0 1000 2000 3000 4000 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 25 cm30 - 29 cm ϕ, V Uscan, V t582 t602 t623 t643 t664 t684 t705 Fig. 4. Edge plasma potential profiles in OH (t582, down) and ECRH (t684, up) heating The clear link between the core plasma potential and ECRH power was observed: the stronger power leads to the higher (more positive) absolute potential. . This is right either for the core plasma or for the edge. Similar tendency was also found in TJ-II stellarator during experiments with ECRH power modulation. 5. DEPENDENCE OF POTENTIAL ON THE ELECTRON DENSITY The Plasma potential evolution shows the link of the potential value with density on both devices[5]. The core plasma potential on TJ-II decreases as plasma density increases Fig. 5. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -600 -400 -200 0 200 400 600 800 1000 1200 1400 1600 1800 #13668#13501 #13542 time drift corr#13542 #13542 #13543 ϕ, V Dens #13536 Fig. 5 The dependence of potential on density During the C-pellet injection on T-10, the edge potential falls down to -100V with the density rise. The 38 mean value of the negative electric field become stronger up to Er = -120 V/cm (Fig. 6). Generally, the higher the density the lower the plasma potential. 25 26 27 28 29 30 -300 -200 -100 0 100 200 ECRH off-axis C-pellet ϕ, V r, cm t489 t510 t632 t653 t694 t714 t869 t890 #40823 ECRH on+off axis OH Fig. 6. Potential profile before and after C-pellet injection 6. PERIPHERY PLASMA PROFILE EVOLUTION WITH CHANGING LIMITER POSITION An overlapping of the HIBP bulk potential profile and the Langmuir probe edge potential is an important issue in hifted together with the rail limiter position, studies of the periphery plasma. The edge plasma potential profile was investigated by HIBP of the T-10 tokamak within the radial interval of (0.85 < r/a < 1)[6]. The insertion of the rail limiter into alim = 27cm leads to the modification of the plasma profiles (Fig. 7). The HIBP potential profiles have the absolute reference at the plasma potential value of Langmuir probe, located at rail limiter. The potential profile was shifted together with the rail limiter position, while its shape remains similarto the initial one. In limiter shadow, 27<r<30cm, the potential variationis small within the experimental accuracy The density profile show the increase of the gradient when limiter is inserted at alim=27 cm. To verify the link between the position of LCMS and the edge potential profile the experiment with shift of the plasma column during one shot was done (Fig. 8). 2000 3000 4000 5000 6000 -250 -200 -150 -100 -50 0 50 100 0 500 1000 1500 2000 2500 3000 #40919, #40920, #40922, #40925 a lim = 30 cm ϕ, V Uscan, V #40912, #40913, #40914 alim = 27 cmLangmuir probe data It o t ~30 cm 25 cm27 cm Fig. 7. Profiles of theϕ and Itot for alim = 27 and alim = 30 cm . The gradient region of the potential profile moves with limiter position 3000 3500 4000 4500 5000 5500 -100 -50 0 50 100 150 ϕ, V Uscan, V28 cm 26 cm Fig. 8. Potential profiles with shifting of the plasma The gradient part of the potential moves with LCMS position. Secondary beam current profile is also shifted accordingly. The plasma edge profiles evolution with limiter position in TJ-II is shown in Fig. 9. 0,2 0,4 0,6 0,8 1,0 -200 -100 0 100 200 300 400 500 600 0 1 2 3 4 ϕ, V U scan , V ...#13573 I to t _#13560 Fig.9. Plasma edge profiles evolution in TJ-II Plasma density is more sensitive to the limiter insertion while plasma potential remains almost unchanged. In the TJ-II the sign of the edge potential has a clear dependence on density. The negative plasma potential was observed by Langmuir probes, and HIBP when ne is above some threshold.. The both diagnostics are demonstrated the same tendency: the higher density - the lower the plasma potential[7]. 7. HIBP MEASUREMENTS IN BIASING EXPERIMENTS In TJ-II (limiter biasing) have shown the first experimental example of the possibility of charging potential of the plasma column as a whole[8] with plasma response about 10…100 µs, Fig. 10. Both edge and core plasma potential are affected by limiter biasing. Fig.10. Plasma potential evolution with negative biasing (lower curve ) and without biasing For T-10, in contrast to TJ-II experiments, the electric field is modified mainly in the proximity of the biased electrode (with Ubias) Fig. 11. But, in spite of the important differences in the magnetic configurations and experimental conditions between two machines, the basic features of the HIBP data show same similarities: the potential response ∆ϕpl has the same polarity and scale as Ubias and the fluctuations are suppressed near electrode (T-10) / limiter (TJ-II). 39 Fig.11.The plasma extra potential∇ϕ and Itot profiles evolution by negative electrode biasing on T-10 CONCLUSIONS The evolution of the electric potential in a wide range of regimes with ECR heating using upgraded Heavy Ion Beam Probing diagnostic in T-10 and TJ-II is described. Comparison of the plasma potential behavior in both devices was shown the clear link between the core plasma potential and ECRH power: the stronger power leads to the higher (more positive) absolute potential. On the T-10 tokamak the electric potential follows the electron temperature in similar way as was found on stellarator TJ-II. The potential in the plasma core and edge is linked with plasma density in both machines.: the higher density – the lower plasma potential.. The negative plasma potential was observed when ne is above some threshold value. It is possible to modify global confinement and plasma parameters with biasing, illustrating the direct impact of the radial electric fields on stellarator and tokamak confinement properties. ACKNOWLEDGEMENT The work is supported by grants: RFBR 05-02-17016, NSh-2264.2006.2, INTAS 1000008-8046 and NWO- RFBR 047.016.015. REFERENCES 1. F. Wagner et al. // Phys. Rev. Lett. 1982, v. 49, p.1408. 2. IEEE Trans. on Plasma Science, Special Issue. 1994, v. 22, N4. 3. I.Bondarenko et al. // Rev. Sci. Instrum. 2001, v.72, N1, p.583. 4. D.A. Kislov and T-10 Team // Nuclear Fusion. 2001, v. 41, p.1473. 5. A, Melnikov et al. // Chech. J. of Phys. 2005, v.55, N12, p. 1569. 6. L. Eliseev et al.// 32 ERS Conf. on Plasm Phys. and Contr. Fus. 2005, ECA 29C, P-2.018. 7. A. Melnikov et al.// Fusion Science and Technology. 2007, v. 51, N1, p.31-37. 8. A. Melnikov et al.// Fusion Science and Technology. 2004, v.46, N2, p. 299. РАЗВИТИЕ ЭЛЕКТРИЧЕСКОГО ПОТЕНЦИАЛА ПЛАЗМЫ В ЦЕНТРЕ И НА ПЕРИФЕРИИ ДЛЯ СТЕЛЛАРАТОРА TJ-II И ТОКАМАКА Т-10 Л. Крупник, А. Жежера, А. Мельников, К. Идальго, А. Алонсо, А. Чмыга, Л. Елисеев, А. Комаров, А. Козачек, С. Лысенко, И.Л. де Паблос, С. Перфилов Представлены основные результаты исследований электрического потенциала плазми, полученного на стеллараторе/торсатроне TJ-II и токамаке Т-10 при идентичных режимах работы установок. РОЗВИТОК ЕЛЕКТРИЧНОГО ПОТЕНЦІАЛУ ПЛАЗМИ У ЦЕНТРІ ТА НА ПЕРИФЕРІЇ ДЛЯ СТЕЛАРАТОРА TJ-II ТА ТОКАМАКА Т-10 Л. Крупник, О. Жежера, O. Мельников, К. Ідальго, А. Алонсо, O. Чмига, Л. Єлісєєв, O. Комаров, O. Козачок, С. Лисенко, І.Л. де Паблос, С. Перфілов Представлено основні результати досліджень електричного потенціалу плазми, одержаного на стелараторі/торсатроні TJ-II та на токамаці Т-10 при ідентичних режимах роботи пристроїв. 40