Nonlinear decay of Langmuir waves into counter-propagating surface ones

This paper presents a study of the nonlinear excitation of surface waves involving a Langmuir wave decay at a plasma-dielectric interface. The Langmuir wave is considered to be incident perpendicularly upon the interface, where it decays into a couple of counter-propagating surface ones. The excit...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2006
Автори: Akimov, Yu.A., Azarenkov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81794
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonlinear decay of Langmuir waves into counter-propagating surface ones / Yu.A. Akimov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 107-109. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81794
record_format dspace
spelling Akimov, Yu.A.
Azarenkov, N.A.
2015-05-20T16:54:29Z
2015-05-20T16:54:29Z
2006
Nonlinear decay of Langmuir waves into counter-propagating surface ones / Yu.A. Akimov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 107-109. — Бібліогр.: 3 назв. — англ.
1562-6016
PACS: 52.35.Mw, 52.40.Db
https://nasplib.isofts.kiev.ua/handle/123456789/81794
This paper presents a study of the nonlinear excitation of surface waves involving a Langmuir wave decay at a plasma-dielectric interface. The Langmuir wave is considered to be incident perpendicularly upon the interface, where it decays into a couple of counter-propagating surface ones. The excitation is analyzed for both the undamped and damped Langmuir waves.
Исследовано нелинейное возбуждение двух встречных поверхностных волн при распаде ленгмюровской волны, падающей перпендикулярно на границу раздела плазма-диэлектрик. Проанализирована динамика возбуждения поверхностных волн незатухающей и затухающей ленгмюровскими волнами.
Дослiджено нелiнiйне збудження двох зустрiчних поверхневих хвиль при розпадi ленгмюрiвської хвилi, що падає перпендикулярно на межу розподiлу плазма-дiелектрик. Проаналiзована динамiка збудження поверхневих хвиль незагасаючою та загасаючою ленгмюрiвськими хвилями.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Basic plasma physics
Nonlinear decay of Langmuir waves into counter-propagating surface ones
Нелинейный распад ленгмюровских волн на две встречные поверхностные волны
Нелiнiйний розпад ленгмюрiвських хвиль на двi зустрiчнi поверхневi хвилi
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nonlinear decay of Langmuir waves into counter-propagating surface ones
spellingShingle Nonlinear decay of Langmuir waves into counter-propagating surface ones
Akimov, Yu.A.
Azarenkov, N.A.
Basic plasma physics
title_short Nonlinear decay of Langmuir waves into counter-propagating surface ones
title_full Nonlinear decay of Langmuir waves into counter-propagating surface ones
title_fullStr Nonlinear decay of Langmuir waves into counter-propagating surface ones
title_full_unstemmed Nonlinear decay of Langmuir waves into counter-propagating surface ones
title_sort nonlinear decay of langmuir waves into counter-propagating surface ones
author Akimov, Yu.A.
Azarenkov, N.A.
author_facet Akimov, Yu.A.
Azarenkov, N.A.
topic Basic plasma physics
topic_facet Basic plasma physics
publishDate 2006
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Нелинейный распад ленгмюровских волн на две встречные поверхностные волны
Нелiнiйний розпад ленгмюрiвських хвиль на двi зустрiчнi поверхневi хвилi
description This paper presents a study of the nonlinear excitation of surface waves involving a Langmuir wave decay at a plasma-dielectric interface. The Langmuir wave is considered to be incident perpendicularly upon the interface, where it decays into a couple of counter-propagating surface ones. The excitation is analyzed for both the undamped and damped Langmuir waves. Исследовано нелинейное возбуждение двух встречных поверхностных волн при распаде ленгмюровской волны, падающей перпендикулярно на границу раздела плазма-диэлектрик. Проанализирована динамика возбуждения поверхностных волн незатухающей и затухающей ленгмюровскими волнами. Дослiджено нелiнiйне збудження двох зустрiчних поверхневих хвиль при розпадi ленгмюрiвської хвилi, що падає перпендикулярно на межу розподiлу плазма-дiелектрик. Проаналiзована динамiка збудження поверхневих хвиль незагасаючою та загасаючою ленгмюрiвськими хвилями.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/81794
citation_txt Nonlinear decay of Langmuir waves into counter-propagating surface ones / Yu.A. Akimov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 107-109. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT akimovyua nonlineardecayoflangmuirwavesintocounterpropagatingsurfaceones
AT azarenkovna nonlineardecayoflangmuirwavesintocounterpropagatingsurfaceones
AT akimovyua nelineinyiraspadlengmûrovskihvolnnadvevstrečnyepoverhnostnyevolny
AT azarenkovna nelineinyiraspadlengmûrovskihvolnnadvevstrečnyepoverhnostnyevolny
AT akimovyua neliniiniirozpadlengmûrivsʹkihhvilʹnadvizustričnipoverhnevihvili
AT azarenkovna neliniiniirozpadlengmûrivsʹkihhvilʹnadvizustričnipoverhnevihvili
first_indexed 2025-11-26T18:38:54Z
last_indexed 2025-11-26T18:38:54Z
_version_ 1850768668078637056
fulltext NONLINEAR DECAY OF LANGMUIR WAVES INTO COUNTER-PROPAGATING SURFACE ONES Yu.A. Akimov, N.A. Azarenkov Karazin Kharkiv National University, 31 Kurchatov av., 61108 Kharkiv, Ukraine, e-mail: akimov.yury@mail.ru This paper presents a study of the nonlinear excitation of surface waves involving a Langmuir wave decay at a plasma-dielectric interface. The Langmuir wave is considered to be incident perpendicularly upon the interface, where it decays into a couple of counter-propagating surface ones. The excitation is analyzed for both the undamped and damped Langmuir waves. PACS: 52.35.Mw, 52.40.Db 1. INTRODUCTION At present, properties of surface waves (SWs) in bounded plasma-like structures are a subject of intensive theoretical and experimental research. Directions of the nonlinear effect studies determining properties of SWs in plasma waveguides are wide enough. Analysis of the SW dynamics in three-wave interactions is main among of them. High-frequency volume waves, such as Langmuir waves, are well known to be essential for unmagnetized plasma. Their propagation in bounded plasma plays an im- portant role in SW dynamics. They are responsible for the resonant damping of the SWs in inhomogeneous transient layers, as well as for their nonlinear damping, caused by the generation of a SW second harmonic at frequencies, close to the plasma one. Moreover, the Langmuir waves incident upon a dielectric surface can effectively decay into two SWs [1]. It should be marked that the results presented in paper [1] are restricted by the consideration of a dielectric with the permittivity εd = 3, when the Langmuir waves decay into a couple of the potential SWs. Thus, the decay of the Langmuir waves into the electromagnetic SWs that takes place at εd < 3 has been left without appropriate attention. Our paper is devoted to this aspect of the parametric in- teraction of the Langmuir and surface waves. We consider a resonant parametric instability of the counter-propagating electromagnetic SWs at their interaction with the Langmuir wave incident normally upon a dielectric surface. 2. LINEAR SWS Let us consider a semibounded homogeneous dissipa- tive plasma bounded by a dielectric. Let the plasma occupy the half-space x > 0, whereas the dielectric occupies the x < 0 region. The wavenumber kz and frequency ω of the SWs propagating along the plasma-dielectric border (the z-axis) are well known to be connected by the following relation [2] k2 z = k2 εpεd εp + εd . (1) In this expression, k = ω/c is the vacuum wavenumber, c is the speed of light in vacuum, εp = 1 − ω2 pe/ω2 is the dielectric permittivity of the plasma with ωpe being the electron plasma frequency, and εd is the permittivity of the dielectric. According to linear dispersion relation (1), the SWs are reciprocal in the considered structure. It means that two counter-propagating SWs may exist with the same fre- quency ω and opposite wavenumbers±kz . Their fields can be represented in the following form W± = 1 2 [ W± exp(−iωt) + W ∗ ± exp(iωt) ] , (2) whereW = (Ex, Ez,Hy). Spatial distribution of the SW fields in the plasma and dielectric is given by [2] x > 0 : E±x = ±i kz κp E± exp(−κpx ± ikzz), E±z = E± exp(−κpx ± ikzz), H±y = i kεp κp E± exp(−κpx ± ikzz), x < 0 : E±x = ∓i kz κd E± exp(κdx ± ikzz), E±z = E± exp(κdx ± ikzz), H±y = −i kεd κd E± exp(κdx ± ikzz), (3) whereE+ andE− are theEz(x = 0)-field amplitudes both the waves, propagating in the positive and negative direc- tions of the z-axis. Here, κ2 p,d = k2 z − k2εp,d characterize penetration depths of the wave-fields into the plasma and dielectric. 3. NONLINEAR DISPERSION EQUATION We study the parametric excitation of the electromag- netic SWs by the Langmuir wave propagating perpendic- ularly to the plasma-dielectric interface. In the hydrody- namical approach of a cold plasma, such a Langmuir wave is described by E0 = 1 2 [ E0 exp(−iω0t) + E ∗ 0 exp(iω0t) ] , ω0 = ωpe E0 = {E0[exp(−ik0x) − exp(ik0x)], 0, 0} , (4) with ω0 = ωpe. Efficiency of this interaction is provided by the reciprocity of the SWs under study and by the spatial synchronism of the three waves, 0 = kz + (−kz). Another condition characterizing the efficiency of such an interac- tion is the temporary synchronism of the considered waves, ω0 = ω + ω. It is provided by the fact that the maximum frequency, ωmax = ωpe/ √ 1 + εd, above which the SW existence is impossible, exceeds the half-frequency of the Langmuir wave, ωmax ≥ ω0/2, in the range εd ≤ 3. It en- ables the effective interaction of the surface and Langmuir waves. Based on nonlinear Maxwell’s equations and the equa- tion of plasma electron motion in the fields of weakly non- linear SWs, we can write the following set of equations for the SW fields in the plasma region ∇× E± − ikH± = 0, ∇× H± + ikεpE± = (4π/c)J±, } (5) where the right-hand sides of Eqs. (5) is governed by a nonlinear current J± = ieω2 pe 8πmω2ω0 [ (E0∇)E ∗ ∓ + (E ∗ ∓∇)E0− − E0 × (∇× E ∗ ∓) + ωω0 ω2 pe E ∗ ∓(∇E0) ] . (6) It can be easily shown that, since, in the system under con- sideration, the Langmuir wave possesses the perpendicular to the medium interface electric field-component only, a surface current to second order is equal to zero. Substituting linear fields of the SWs (3) and pump wave (4) into nonlinear current (6) and solving then equation set (5) together with the boundary conditions, consisting of the continuity of H±y and E±z fields at the interface x = 0, one can derive the nonlinear dispersion equation of the con- sidered SWs k ( εp κp + εd κd ) E± = 2ek0(κ2 p + k2 z) cmωκp(k2 0 + 4κ2 p) E0E ∗ ∓. (7) The left-hand side of Eq. (7) is a dispersion relation for the linear SWs, while its right-hand side is a response of the nonlinear current J±, caused by the SW interaction with the Langmuir wave. 4. SW AMPLITUDE DYNAMICS We consider the Langmuir wave amplitude to be small, when the SW amplitudes undergo a little change over their period, |∂ ln E±/∂t| � |ω|. In this approach, the dynam- ical equations [3] for the excited wave amplitudes can be written, using (7), as follows ∂E± ∂t = αE0E ∗ ∓ exp(−γ0t) − γE±, (8) α = − 2e cm εdε 2 pkk0 (εd + ε2 p)[4ε2 pk 2 − (εp + εd)k2 0] , where the coefficient α characterizes efficiency of the SW interaction with the pump wave. The factor exp(−γ0t), in (8), describes the Langmuir wave attenuation. In the cold plasma considered here, it is mainly caused by electron col- lisions: γ0 = ν/2, (9) where ν is the the electron collision frequency. The item, −γE±, in (8), describes the linear attenuation of the SWs, E± ∝ exp(−γt), with a damping rate γ. The rate of colli- sional and resonant attenuation of the SWs [2] is γ = ν 2 εd(1 − εp) ε2 p + εd − √ − ε2 p εp + εd πηkωε2 pε 2 d ε2 d − ε3 p − εpεd(1 − εp) , (10) The parameter η = (dεp/dx)−1 x=x0 characterizes the plasma density inhomogeneity in the narrow transient layer at the resonant point, x0, where εp(x0) = 0. 4.1 LANGMUIR WAVE OF A CONSTANT AMPLITUDE When there is a steady source maintaining the Lang- muir wave amplitude to be constant, γ0 = 0. In this case, the solution of Eq. (8) is threshold in nature, E± = E±(0) exp(−γt)× × [ ch(βt) + αE0 β E∗ ∓(0) E±(0) sh(βt) ] , β = |αE0|. (11) So, a threshold value of the pump wave amplitude, above which the SW excitation is possible, can be written as |E0|th = γ/|α|. (12) When the pump wave amplitude exceeds threshold value (12), a simultaneous growth of both the SW amplitudes ap- pears with the rate γNL = γ (|E0|/|E0|th − 1) . (13) Thus, an increase in the pump wave amplitude, as well as a decrease of the linear SW damping rate, leads to an in- crease of the nonlinear growth rate, γNL. Mark that influence of k0 on the nonlinear growth rate, γNL, and threshold, |E0|th, is governed by the dependence α(k0). It can be easily shown that the parameter α(k0) is negative. Its absolute value reaches the maximum at the following wavenumber of the Langmuir wave k0(max) = k √ − 4ε2 p εp + εd , (14) At this wavenumber, threshold (12) has the minimum, while nonlinear growth rate (13) attains the maximum. The numerical analysis (fig.1) shows that, with an increase in the permittivity of the dielectric, εd, the minimum of |E0|th decreases and shifts towards larger wavenumbers of the pump wave. At that, the SW excitation is the most effective at wavenumbers of the Langmuir wave close to 5 ωpe/c. Mark, the obtained results are fair at the initial stage, t < 1/γ0, of a weakly damped pump wave decay also, when γ0 � γNL. At this stage, the amplitude |E0| can be treated as a constant. 4.2 DAMPED LANGMUIR WAVE Account for the Langmuir wave damping complicates solution of coupled equation set (8), E± = { C1±I1/2(ξ) + C2±K1/2(ξ) }× × exp[−(γ0/2 + γ)t], ξ = |αE0| γ0 exp(−γ0t). (15) Fig.1. Influence of k0 and εd on threshold |E0|th (12) for the plasma with (dω2 pe/dx)−1 x=x0 ω3 pe/c = 0.001 and ν/ωpe = 0.001 Fig.2. Evolution of the normalized amplitudes, η, and phases, Φ, under |αE0|/γ0 = 3.0 Here, I1/2 and K1/2 are the modified cylindrical Bessel and McDonald functions of the order 1/2. The constants C1± and C2± are determined by initial values of the SW amplitudes and their derivatives. Analysis of the last expression demonstrates that inter- action of the counter-propagating SWs with the damped pump wave does not result in an unlimited growth of the SW amplitudes. Moreover, after the complete damping of the Langmuir wave, the SW amplitudes damp with the lin- ear rate, |E±(t → ∞)| → η±(∞)|E±(0)| exp(−γt). The parameters η±(t) = exp(γt)|E±(t)|/|E±(0)| are the ra- tios of the nonlinear SW amplitudes, |E±(t)|, to the ampli- tude values of linear waves, |E±(0)| exp(−γt), and char- acterize efficiency of the three-wave interaction. By virtue of the considered SW equivalence and their reciprocity, it is naturally to set |E+(0)| = |E−(0)| and η±(t) ≡ η(t). Analysis of the parameter η(t) shows that dynamics of the SW amplitudes significantly depends on initial phases of the interacting waves. The temporal dependences of η(t) andΦ(t) = Φ0(t)−Φ+(t)−Φ−(t), withΦ0,± = arg E0,±, are presented in fig.2 for different initial values Φ(0). One can see that a SW amplitude saturation level, η(∞), de- creases with an increase of the initial phase, Φ(0), devia- tion from zero. Moreover, at Φ(0) → π, the interacting waves have opposite phases and η(∞) → 0. It means that, at Φ(0) → π, nonlinear interaction of the SWs and pump wave does not result in a growth of the SW amplitudes. On the contrary, it leads to their damping. In the considered case of a damped Langmuir wave, the influence of the wavenumber k0 on the decay instability dynamics is also governed by the dependence α(k0). Thus, one can conclude that, at the damped Langmuir wave de- cay, the greatest efficiency of the SW excitation is reached at k0 = k0(max), when the coupling coefficient of the SWs with the pump wave, α(k0), has the maximum. REFERENCES 1. N.B. Aleksić, A.G. Zagorodny, V.I. Zasenko. Reso- nant interaction of electron waves in semibounded plasma: Preprint. Kiev: Institute of Theoretical Physics, ITP-90- 28P, 1990. 2. A.N. Kondratenko. Plasma Waveguides. Moscow: “At- omizdat”, 1976. 3. J. Weiland, H. Wilhelmsson. Coherent Nonlinear Inter- action of Waves in Plasmas. Oxford: “Pergamon”, 1976. НЕЛИНЕЙНЫЙ РАСПАД ЛЕНГМЮРОВСКИХ ВОЛН НА ДВЕ ВСТРЕЧНЫЕ ПОВЕРХНОСТНЫЕ ВОЛНЫ Ю.А. Акимов, Н.А. Азаренков Исследовано нелинейное возбуждение двух встречных поверхностных волн при распаде ленгмюровской вол- ны, падающей перпендикулярно на границу раздела плазма-диэлектрик. Проанализирована динамика возбужде- ния поверхностных волн незатухающей и затухающей ленгмюровскими волнами. НЕЛIНIЙНИЙ РОЗПАД ЛЕНГМЮРIВСЬКИХ ХВИЛЬ НА ДВI ЗУСТРIЧНI ПОВЕРХНЕВI ХВИЛI Ю.О. Акiмов, М.О. Азарєнков Дослiджено нелiнiйне збудження двох зустрiчних поверхневих хвиль при розпадi ленгмюрiвської хвилi, що падає перпендикулярно на межу розподiлу плазма-дiелектрик. Проаналiзована динамiка збудження поверхневих хвиль незагасаючою та загасаючою ленгмюрiвськими хвилями.