Axial symmetric surface waves in tubular magneto-active plasma column

This paper is devoted to the dispersion properties of high-frequency axial symmetric potential surface waves propagating in a cylindrical waveguide structure. The structure is supposed to consist of a radially non-uniform plasma layer, partially filling a metal waveguide and immersed in an externa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Akimov, Yu.A., Olefir, V.P., Azarenkov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81798
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Axial symmetric surface waves in tubular magneto-active plasma column / Yu.A. Akimov, V.P. Olefir, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 121-123. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81798
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-817982025-02-09T14:39:12Z Axial symmetric surface waves in tubular magneto-active plasma column Аксиально-симетричные поверхностные волны в трубчатом столбе магнитоактивной плазмы Аксиально-симетричні поверхневі хвилі у трубчатому стовпі магнітоактивної плазми Akimov, Yu.A. Olefir, V.P. Azarenkov, N.A. Basic plasma physics This paper is devoted to the dispersion properties of high-frequency axial symmetric potential surface waves propagating in a cylindrical waveguide structure. The structure is supposed to consist of a radially non-uniform plasma layer, partially filling a metal waveguide and immersed in an external axial magnetic field. The influence of the waveguide structure parameters, as well as the magnetic field value, on frequency, phase and group velocities, resonance damping of the surface waves is investigated both numerically and analytically. В данной статье изучены дисперсионные свойства высокочастотных аксиально-симметричных потенциальных поверхностных волн, распространяющихся в цилиндрической волноводной структуре, состоящей из радиально неоднородного пламенного слоя, частично заполняющего металлический волновод и помещенного во внешнее аксиальное магнитное поле. Численно и аналитически исследуется влияние параметров волноводной структуры и внешнего магнитного поля на частоты, фазовые и групповые скорости поверхностных волн, а также на декременты их затухания. В роботі вивчено дисперсійні властивості високочастотних аксиально-симетричних потенціальних поверхневих хвиль, що розповсюджуються в циліндричній хвилеводній структурі, яка містить радіально неоднорідний плазмовий шар, що частково заповнює металевий хвилевод і знаходиться у зовнішньому аксіальному магнітно- му полі. Досліджено вплив параметрів хвилеводної структури та зовнішнього магнітного поля на частоти, фазові та групові швидкості поверхневих хвиль, а також на декременти їхнього загасання. 2006 Article Axial symmetric surface waves in tubular magneto-active plasma column / Yu.A. Akimov, V.P. Olefir, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 121-123. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.35.Fp https://nasplib.isofts.kiev.ua/handle/123456789/81798 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Akimov, Yu.A.
Olefir, V.P.
Azarenkov, N.A.
Axial symmetric surface waves in tubular magneto-active plasma column
Вопросы атомной науки и техники
description This paper is devoted to the dispersion properties of high-frequency axial symmetric potential surface waves propagating in a cylindrical waveguide structure. The structure is supposed to consist of a radially non-uniform plasma layer, partially filling a metal waveguide and immersed in an external axial magnetic field. The influence of the waveguide structure parameters, as well as the magnetic field value, on frequency, phase and group velocities, resonance damping of the surface waves is investigated both numerically and analytically.
format Article
author Akimov, Yu.A.
Olefir, V.P.
Azarenkov, N.A.
author_facet Akimov, Yu.A.
Olefir, V.P.
Azarenkov, N.A.
author_sort Akimov, Yu.A.
title Axial symmetric surface waves in tubular magneto-active plasma column
title_short Axial symmetric surface waves in tubular magneto-active plasma column
title_full Axial symmetric surface waves in tubular magneto-active plasma column
title_fullStr Axial symmetric surface waves in tubular magneto-active plasma column
title_full_unstemmed Axial symmetric surface waves in tubular magneto-active plasma column
title_sort axial symmetric surface waves in tubular magneto-active plasma column
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Basic plasma physics
url https://nasplib.isofts.kiev.ua/handle/123456789/81798
citation_txt Axial symmetric surface waves in tubular magneto-active plasma column / Yu.A. Akimov, V.P. Olefir, N.A. Azarenkov // Вопросы атомной науки и техники. — 2006. — № 6. — С. 121-123. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT akimovyua axialsymmetricsurfacewavesintubularmagnetoactiveplasmacolumn
AT olefirvp axialsymmetricsurfacewavesintubularmagnetoactiveplasmacolumn
AT azarenkovna axialsymmetricsurfacewavesintubularmagnetoactiveplasmacolumn
AT akimovyua aksialʹnosimetričnyepoverhnostnyevolnyvtrubčatomstolbemagnitoaktivnojplazmy
AT olefirvp aksialʹnosimetričnyepoverhnostnyevolnyvtrubčatomstolbemagnitoaktivnojplazmy
AT azarenkovna aksialʹnosimetričnyepoverhnostnyevolnyvtrubčatomstolbemagnitoaktivnojplazmy
AT akimovyua aksialʹnosimetričnípoverhnevíhvilíutrubčatomustovpímagnítoaktivnoíplazmi
AT olefirvp aksialʹnosimetričnípoverhnevíhvilíutrubčatomustovpímagnítoaktivnoíplazmi
AT azarenkovna aksialʹnosimetričnípoverhnevíhvilíutrubčatomustovpímagnítoaktivnoíplazmi
first_indexed 2025-11-26T23:30:45Z
last_indexed 2025-11-26T23:30:45Z
_version_ 1849897618152357888
fulltext AXIAL SYMMETRIC SURFACE WAVES IN TUBULAR MAGNETO-ACTIVE PLASMA COLUMN Yu.A. Akimov, V.P. Olefir, N.A. Azarenkov Karazin Kharkiv National University, 31 Kurchatov av., Kharkiv 61108, Ukraine, e-mail: olefir@pht.univer.kharkov.ua This paper is devoted to the dispersion properties of high-frequency axial symmetric potential surface waves propa- gating in a cylindrical waveguide structure. The structure is supposed to consist of a radially non-uniform plasma layer, partially filling a metal waveguide and immersed in an external axial magnetic field. The influence of the waveguide structure parameters, as well as the magnetic field value, on frequency, phase and group velocities, resonance damping of the surface waves is investigated both numerically and analytically. PACS: 52.35.Fp 1. INTRODUCTION To increase the plasma heating efficiency is one of the important problems in discharge maintenance by traveling surface waves (SWs) under low gas pressure [1, 2]. At those conditions, the collision mechanism of SW power transfer to a plasma becomes ineffective. It motivates the study of collisionless methods of plasma heating. One of them is resonant absorption of SWs that takes place in those plasma regions where the wave frequency is close to the upper hybrid one [3, 4]. The aim of this paper is to study the plasma parameter and external magnetic field influence on propagation and resonant damping of sym- metric SWs in coaxial vacuum-plasma-vacuum-metal structures. 2. TASK STATEMENT Let us consider high-frequency axial symmetric poten- tial SWs that propagate along a cylindrical waveguide structure, which consists of a radially non-uniform plasma layer partially filling a metal waveguide with a radius R . The radial distribution of the plasma density is uniform, 0nn = , in the region dRrdR −<<+ 21 and varies from 0n to zero in the narrow ( 1Rd << ) transition re- gions dRrR +<< 11 and dRrR −<< 22 , where 1R and 2R are the internal and external radiuses of the plasma layer. An external steady magnetic field, 0H , is supposed to be directed along the waveguide structure axis. The plasma is considered to be a cold weakly colli- sion medium with an effective electron collision fre- quency ων << , whereω is the wave frequency. The dispersion relation of the considered surface waves has the following form , )( )( )( )( 212322321 212322321 210 210 111311311 111311311 110 110 ZTkiTkZ YTkiTkY RK RI ZTkiTkZ YTkiTkY RK RI χπηχ χπηχ χ χ χπηχ χπηχ χ χ +− +− = +− +− (1) where )( )( 10 1 ' 0 1 j j j RI RI Y χ χ ε= , )( )( 10 1 ' 0 1 j j j RK RK Z χ χ ε= , )( )( 130 13 ' 0 1 RkI RkI T = , )()()()( )()()()( 2303030230 23 ' 0303023 ' 0 2 RkKRkIRkKRkI RkKRkIRkKRkI T − − = , ])[( )( 1 22 2 1 e e i i ωνωω νωΩ ε −+ + −= , )( 1 2 3 νωω Ω ε i e + −= , ( ) jrj drd 1 1 / −= εη ; 3k is the axial wavenumber; eΩ , 0>eω are the electron plasma and cyclotron frequencies; 1331 /εεχ k= is the inverse depth of the SW penetra- tion into the plasma; jr are the points inside the transient regions, where the upper hybrid resonance 0)(1 =jrε takes place, jj Rr ≈ ; 0I and 0K are the modified cylin- drical Bessel and McDonald functions of the zero order. 3. RESULTS AND DISCUSSION Dispersion relation (1) describes propagation of two symmetric surface waves. The first wave propagates along the internal interface of the non-uniform plasma layer, whereas the second one does along the external border. General solution of dispersion equation (1) at ar- bitrary values of the waveguide parameters and external magnetic field can be obtained numerically only (fig. 1). Nevertheless, in some cases, analytical solution of equa- tion (1) can be found. 3.1 LONG SURFACE WAVES Firstly, we consider long symmetric SWs, when 1, 213 <<RRk χ . For the waves propagating at the inter- nal border of the plasma layer, for an arbitrary ratio of the radiuses 1R and 2R , one can write .ln 42 ,ln 2 1 1 2 4 1 4 3 1 1 1 2 2 1 2 3222 R RRk R R RRk ee πη ω ν ω γ Ωωω −=         −+= (2) The presented expressions demonstrate that these waves are backward. Their frequency grows with an increase of the external magnetic field (fig. 1a) and weakly depends on the ratio of the external and internal radiuses of the plasma. It does not depend on value of the metal waveguide radius also (fig. 2a). Fig.1. Influence of the external magnetic field on disper- sion of the SWs propagating at the internal (a) and exter- nal (b) interfaces of the cylindrical plasma layer, in the case of 12 / RR =2 and 1/ RR =2.1. The curves 1-3 corre- spond to ee Ωω / =0; 0.3; 0.5 The frequency, ω , of the long SWs propagating at the external boundary of the plasma layer is described by .ln)( 2 2 2 1 2 2 2 3 2 2 R RRRke −= Ωω (3) It is necessary to mark, the condition 121 <<Rχ holds for weak magnetic fields only, 22 ee Ωω << . At that, the waves propagating at the external boundary are forward, in con- trast to the waves propagating at the internal boundary of the layer (2). The frequency of these waves slightly de- pends on the magnetic field (fig. 1b) and is determined by the plasma layer width, as well as by the metal radius. As the metal comes to the plasma, the wave frequency de- creases (fig. 2b). In the limit RR =2 , the SWs do not exist at the external boundary of the plasma. In the ab- sence of the metal, expressions for the frequency and damping rate for the waves at the external boundary be- come . ln22 , ln )( 2 23 3 2 2 1 2 2 4 4 2 23 2 1 2 2 2 3 2 2 RkR RR Rk RRk ee − −= − = ω Ωπη ω ν ω γΩω (4) Thus, the efficiency of resonant damping is proportional to the plasma layer width. 3.2 SHORT SURFACE WAVES Now we consider short symmetric SWs, when 1)(,, 1211113 >>− RRRRk χχ . For the waves propagat- ing at the internal border of the plasma layer, . )( )( )(2 , 2 11 2 31222 222 222 422 13 22 2 k Rk eee e ee ee ee ηπ ωΩΩ ωω ωΩω ωωΩ ω ν ω γ ωΩω − − + − − =       + + = (5) Fig.2. Influence of the metal on dispersion of the SWs propagating at the internal (a) and external (b) interfaces of the cylindrical plasma layer, in the case of 12 / RR =2 and ee Ωω / =0.3. The curves 1-3 correspond to 1/ RR =2.1; 2.3; 5.0 In this region, SWs at the internal border of the plasma layer are backward with small group velocity and strong dependence on the external magnetic field (fig. 1a). They do not depend on the metal, as the long waves (fig. 2a). Below, we study the influence of the metal waveguide on properties of the short SWs propagating at the external plasma boundary. Their frequency and damping rate look like [ ].)( )( )( )(2 ],)(4 )()(2[ 2 1 2332222 222 222 422 2 2 2 3 44 222 2 2 3 22 RRkcthk RRk RRk eee e ee ee ee eee − − − + + − − = −++ +−−−−= πη ωΩΩ ωω ωΩω ωωΩ ω ν ω γ Ωω ωΩωω (6) The resonant item in damping rate (6) increases as the metal comes close to the plasma, whereas the frequency decreases (fig. 2b). In the case, when the plasma bounds with the metal, the SWs do not propagate. In the metal waveguide absence, we obtain . )( )( )(2 , 2 11 2 32222 222 222 422 23 22 2 k Rk eee e ee ee ee πη ωΩΩ ωω ωΩω ωωΩ ω ν ω γ ωΩω − − + − − =       − + = (7) Thus, the frequency of SWs at the external border of the plasma layer increases from eω at 123 <<Rk up to the value 2/)( 22 ee ωΩ + at 123 >>Rk (fig. 1b). 0 2 4 6 8 0.70 0.75 0.80 0.85 0.90 0.95 1.00 a 1, 2, 3 k3R1 ω/Ωe 0 2 4 6 8 0.3 0.4 0.5 0.6 0.7 3 2 1 b k3R1 ω/Ωe 0 2 4 6 8 0.70 0.75 0.80 0.85 0.90 0.95 1.00 3 2 1 k3R1 ω/Ωe a 0 2 4 6 8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 3 2 1 k3R1 ω/Ωe b 3.3 PLASMA THICKNESS INFLUENCE Influence of the ratio of the external and internal radi- uses of the plasma layer, 12 / RR , on properties of the SWs is investigated also. It is shown both numerically (fig. 3a) and analytically (2) that an increase of the pa- rameter 12 / RR results in a decrease of the phase velocity of the waves propagating at the internal boundary of the layer. The phase velocity dependence for the waves at the external boundary of the layer on its width is more com- plicated. So, if the vacuum gap is wide enough, an in- crease of the layer thickness results in a growth of the SW phase velocity. However, at a fixed value of the metal radius, an increase of 2R results in a decrease of the vac- uum gap width. In this case, a decrease of the SW phase velocity by the metal coming to the plasma appears more essential, than its growth owing to the increase of the plasma layer width. Their relation for the case of a narrow waveguide is described by (3), and for the waveguide of a finite size is presented in fig. 3b (curve 4). CONCLUSIONS In this paper, the dispersion properties and damping rates of the high-frequency axial symmetric potential sur- face waves propagating in the cylindrical metal waveguide partially filled with the radially non-uniform plasma immersed to the external steady axial magnetic field have been studied. It has been shown that the group velocity of the waves propagating at the internal and ex- ternal interfaces of the cylindrical layer, have opposite signs. It has been obtained that the frequency of SWs, which can propagate at the internal plasma boundary, is greater than the frequency of SWs propagating at the ex- ternal boundary. An increase in the external magnetic field has been shown to cause a growth of the wave fre- quency, whereas the area of axial wavenumbers, at which the waves exist, decreases. Fig.3. Influence of the plasma layer thickness on the dis- persion of SWs propagating at the internal (a) and exter- nal (b) boundaries of the cylindrical plasma layer, in the case of 1/ RR =2.1 and ee Ωω / =0.3. The curves 1-4 cor- respond to 12 / RR =1.1; 1.3; 1.5; 2.0 REFERENCES 1. A. Shivarova, Kh. Tarnev // Plasma Sources Sci. Technol. 2001, v. 10, p. 260. 2. H. Schlüter, A. Shivarova, Kh. Tarnev // Plasma Sources Sci. Technol. 2001, v. 10, p. 267. 3. K. N. Stepanov // Sov. Phys. Tech. Phys. 1965, v. 35, p. 1002. 4. Yu. A. Romanov // Sov. Phys. JETP. 1964, v. 47, p. 2119. АКСИАЛЬНО-СИМЕТРИЧНЫЕ ПОВЕРХНОСТНЫЕ ВОЛНЫ В ТРУБЧАТОМ СТОЛБЕ МАГНИТОАКТИВНОЙ ПЛАЗМЫ Ю.А. Акимов, В.П. Олефир, Н.А. Азаренков В данной статье изучены дисперсионные свойства высокочастотных аксиально-симметричных потенциаль- ных поверхностных волн, распространяющихся в цилиндрической волноводной структуре, состоящей из ради- ально неоднородного пламенного слоя, частично заполняющего металлический волновод и помещенного во внешнее аксиальное магнитное поле. Численно и аналитически исследуется влияние параметров волноводной структуры и внешнего магнитного поля на частоты, фазовые и групповые скорости поверхностных волн, а так- же на декременты их затухания. АКСИАЛЬНО-СИМЕТРИЧНІ ПОВЕРХНЕВІ ХВИЛІ У ТРУБЧАТОМУ СТОВПІ МАГНІТОАКТИВНОЇ ПЛАЗМИ Ю.О. Акімов, В.П. Олефір, М.О. Азарєнков В роботі вивчено дисперсійні властивості високочастотних аксиально-симетричних потенціальних поверх- невих хвиль, що розповсюджуються в циліндричній хвилеводній структурі, яка містить радіально неоднорідний плазмовий шар, що частково заповнює металевий хвилевод і знаходиться у зовнішньому аксіальному магнітно- му полі. Досліджено вплив параметрів хвилеводної структури та зовнішнього магнітного поля на частоти, фа- зові та групові швидкості поверхневих хвиль, а також на декременти їхнього загасання. 0 2 4 6 8 0.75 0.80 0.85 0.90 0.95 1.00 4 3 2 1 k3R1 ω/Ωe a 0 2 4 6 8 0.3 0.4 0.5 0.6 0.7 4 3 2 1 k3R1 ω/Ωe b