Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulat...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2014 |
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2014
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/81945 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-81945 |
|---|---|
| record_format |
dspace |
| spelling |
Bazhenov, V.Yu. Tsiolko, V.V. Piun, V.M. Chaplinskiy, R.Yu. Kuzmichev, A.I. 2015-05-22T17:45:26Z 2015-05-22T17:45:26Z 2014 Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.80.Pi, 61.30.Hn, 81.65.-b https://nasplib.isofts.kiev.ua/handle/123456789/81945 Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes. Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления в слаботочном α- и сильноточном γ-режимах установлены експериментально и рассчитаны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных экспериментальных данных и смоделированных пространственно-временных распределений концентраций электронов и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда. Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабкострумовому α- та сильнострумовому γ-режимах встановлено експериментально та розраховано за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енергії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Низкотемпературная плазма и плазменные технологии Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure Теоретическое и экспериментальное исследования плазменного источника с ВЧ-барьерным разрядом в аргоне при атмосферном давлении Теоретичне та експериментальне дослідження плазмового джерела з ВЧ-бар’єрним розрядом в аргоні при атмосферному тиску Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure |
| spellingShingle |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure Bazhenov, V.Yu. Tsiolko, V.V. Piun, V.M. Chaplinskiy, R.Yu. Kuzmichev, A.I. Низкотемпературная плазма и плазменные технологии |
| title_short |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure |
| title_full |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure |
| title_fullStr |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure |
| title_full_unstemmed |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure |
| title_sort |
theoretical and experimental investigation of the plasma source with argon rf barrier discharge at atmospheric pressure |
| author |
Bazhenov, V.Yu. Tsiolko, V.V. Piun, V.M. Chaplinskiy, R.Yu. Kuzmichev, A.I. |
| author_facet |
Bazhenov, V.Yu. Tsiolko, V.V. Piun, V.M. Chaplinskiy, R.Yu. Kuzmichev, A.I. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2014 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Теоретическое и экспериментальное исследования плазменного источника с ВЧ-барьерным разрядом в аргоне при атмосферном давлении Теоретичне та експериментальне дослідження плазмового джерела з ВЧ-бар’єрним розрядом в аргоні при атмосферному тиску |
| description |
Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes.
Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления в слаботочном α- и сильноточном γ-режимах установлены експериментально и рассчитаны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных экспериментальных данных и смоделированных пространственно-временных распределений концентраций электронов и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда.
Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабкострумовому α- та сильнострумовому γ-режимах встановлено експериментально та розраховано за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енергії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/81945 |
| citation_txt |
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT bazhenovvyu theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure AT tsiolkovv theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure AT piunvm theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure AT chaplinskiyryu theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure AT kuzmichevai theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure AT bazhenovvyu teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii AT tsiolkovv teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii AT piunvm teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii AT chaplinskiyryu teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii AT kuzmichevai teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii AT bazhenovvyu teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku AT tsiolkovv teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku AT piunvm teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku AT chaplinskiyryu teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku AT kuzmichevai teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku |
| first_indexed |
2025-11-27T05:34:11Z |
| last_indexed |
2025-11-27T05:34:11Z |
| _version_ |
1850799041042972672 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2014. №6(94)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p.137-140. 137
THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE
PLASMA SOURCE WITH ARGON RF BARRIER DISCHARGE AT
ATMOSPHERIC PRESSURE
V.Yu. Bazhenov
1
, V.V. Tsiolko
1
, V.M. Piun
1
, R.Yu. Chaplinskiy
2
, A.I. Kuzmichev
2
1
Institute of Physics NAS of Ukraine, Kyiv, Ukraine;
2
National Technical University of Ukraine “KPI”, Kyiv, Ukraine
E-mail: chapok86@ukr.net
Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure ar-
gon in low-current and high-current modes are determined experimentally and calculated by the hybrid hydro-
dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of
concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier dis-
charge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current
γ modes.
PACS: 52.80.Pi, 61.30.Hn, 81.65.-b
INTRODUCTION
In the past decade the capacitive RF atmospheric
pressure glow discharges were widely used in many
applications, including sterilization, surface and exhaust
treatment, and even for creation of layers for liquid
crystal alignment [0]. Advantages of such discharge
type are low ignition voltage and ability to create dense
uniform plasma in relatively large volume. As in the
case of low pressure discharges, atmospheric pressure
ones can exist in two modes – low-current α mode, and
high-currents γ mode. Transition from α to γ mode oc-
curs in result of “breakdown” of space charge layers in
α mode, which in the case of bare metal electrodes leads
to contraction of the discharge, and at subsequent volt-
age growth and sufficient power of energy source may
lead to arcing [0]. The use of dielectric barriers allows
stabilization of the discharge in mode.
However, the experimental studies of RF discharges
at atmospheric pressure mostly appeared to be difficult
due to poor reproducibility of the results obtained in
different systems because of small discharge gap and
high value of the electric disturbance.
Good quantitative predictions could be achieved by
the theoretical methods on the basic of the hybrid mod-
els of discharge and comparing results with experi-
mental data. But theoretical investigations of the RF
discharge are mostly dedicated to the helium discharge
with bare metal electrodes. At the same time, there are
many applications where argon discharge is more pref-
erable.
The present paper reveals experimental and theoreti-
cal investigation of structure and composition of argon
RF discharge with the isolated electrodes at atmospheric
pressure in low, transition and high current modes.
1. EXPERIMENTAL SET UP AND
METHODS
The discharge cell was powered by RF generator
through the capacitive divider C1-C4 (Fig. 1), which,
together with output stage of matching circuit, provided
the discharge power supply in current source regime,
that is, with pre-determined values of the discharge cur-
rent density. The RF voltage waves at the divider input
and at both the discharge electrodes were recorded and
processed for determining values of current through the
discharge cell and voltage at the discharge gap Ud be-
tween the barriers. All measurements were done at ar-
gon flow rate 3 l/min.
Fig. 1. Experimental setup. 1 – DSLR camera/CCD-
spectrometer SL40-2-1024USB; 2 – diaphragm; 3 –
lens; 4 – plasma in discharge gap; 5 – dielectric barri-
ers; 6 – impedance matching unit; 7 – RF generator
(13.56 MHz)
For observation of transverse structure of the dis-
charge emission, optical setup using CCD spectrometer
with 25 x 200 m input slit was used. The discharge gap
imaging with 1:1 magnification was done by means of
quartz achromatic lens with 150 mm focal length and
15 mm diameter. At that, the lens aperture was reduced
in direction across the discharge gap by slit having
5 mm width. Such setup provided diffraction-limited
resolution of about 50 μm FWHM in the image plane
and about 1 cm depth-of-field required for correct ob-
servation of the emission from the whole discharge
thickness. Spatial spectrum distributions were obtained
by the spectrometer movement in direction across the
discharge image with about 10 μm precision.
The main method of our theoretical investigation was
hybrid hydrodynamic model. It is relatively simple in
comparison with the full Boltzmann equation and fast in
mailto:chapok86@ukr.net
138 ISSN 1562-6016. ВАНТ. 2014. №6(94)
comparison with PIC methods which need much more
amount of resources and additional approximation for
modeling the discharges at atmospheric pressure.
This model was based on the continuity equations for
concentration of electrons and their energy in discharge
gap, at that coefficients in these equations were calcu-
lated by solving Boltzmann equation in two-term ap-
proximation. Heavy particles were treated by the diffu-
sion equation, and electric filed strength was calculated
by the Poisson equation. Joule heating, fluid motion of
heavy species and influence of impedance matching box
were neglected. The system of partial differential equa-
tions was solved numerically. Plasma-chemistry con-
sists of reactions between e, Ar, Ar* (4s configuration,
which contains a resonant and a metastable states),
Ar2*, Ar
+
, Ar2
+
. At that, Ar
*
value is mainly contributed
by concentration of long-lived metastable state 1s5 [3].
We chose to treat them as a single compound state Ar
*
.
The reactions cross-sections and rate coefficients are
obtained from literature [3, 4] and from the Boltzmann
solver BOLSIG+ [0].
2. RESULTS AND DISCUSSION
By comparing of the measured and simulated V-I
characteristics (Fig. 2) it is shown that simulated results
are in a good agreement with experimental data. Practi-
cally linear part on the experimental V-I characteristic
corresponds to the low current α – mode with the cur-
rent density Jd 36…74 mA/cm
2
. Part with the negative
differential resistance corresponds to the transition -
mode and the extreme points on experimental curve
represent operation in the high current γ – mode.
Fig. 2. Experimental and simulated V-I characteristics
of the RF discharge
Behavior of spatial distribution of the emission in-
tensity of argon lines with 750.4 and 811.5 nm wave-
length in the low-current, transition and high-current
modes is shown in Figures 3 and 4, respectively. Emis-
sion line at 750.4 nm originates from 2p1 – 1s2 transi-
tion. At that, 2p1 level is mainly excited by direct elec-
tron hit from Ar atom ground state (13.5 eV excitation
threshold). And the line at 811.5 nm is emitted by tran-
sition from 2p9 level to 1s5 one. The excitation of the
2p9 level occurs mainly from 1s5 metastable state by
electrons with energy 2 eV. It is due to the following
circumstances. Although ratio of the concentrations of
metastable atoms to those in ground state is about
10
-5
…10
-3
, at that: 1) maximum cross section value of
1p9 level excitation from metastable state 1s5 exceeds by
about an order of magnitude the cross section value of
excitation from ground state [6]; 2) relative quantity of
electrons with energy 2 eV is essentially bigger than
that of electrons with the energy exceeding excitation
threshold of 1p9 level from ground state ( 14 eV).
Thus, in first approximation, the emission intensity at
750.4 nm is proportional to the plasma density ne, and
that at 811.5 nm – to population of metastable atoms
1s5. However, at interpretation of spatial dependencies
of emission intensity shown in Figs. 3, 4 one should
draw an attention to the following. Excitation rate of Ar
states (2p1, 2p9) by electron hit is K ~ ne N f( ) ( )d ,
where: N is concentration of Ar atoms in ground or
metastable state; f( ) is electron energy distribution
function; ( ) is excitation cross section of this level. As
it is shown by the calculation results (Fig. 6), time-
averaged energy of plasma electrons reaches maxima in
near-electrode regions, and has minimum value in a
midpoint of the discharge gap. Due to that, spatial dis-
tributions of emission intensity of Ar lines at 750.4 nm
and 811.5 nm in our case are functions of not just the
plasma density, but also of mean electron energy . As a
result, spatial distributions of emission of these lines are
~ ne and only approximately represent spatial distribu-
tions of the plasma density and the concentration of
metastable argon atoms. At the same time, positions of
the maxima of emission intensity spatial distribution
actually coincide with plasma generation zones. Indirect
evidence of this is given by a fact that in all discharge
glow modes positions of emission intensity maxima for
the lines at 750.4 and 811.5 nm practically coincide.
As one can see from the Figs. 3 and 4, in the low-
current mode maxima of spatial intensity distributions
for both lines are located closer to the discharge gap
center, which corresponds to zones of plasma generation
and electron heating under electric field action. In the
transition and the high-current modes the maxima are
shifted towards the surfaces of dielectric plates, which is
considered to be due to the discharge transition to
mode with consequent enhancement of influence of
electrons on the processes of plasma generation and
electron heating.
Fig. 3. Experimental time-averaged spatial distribution
of Ar 750.4 nm line emission intensity across the dis-
charge gap at different Jd
ISSN 1562-6016. ВАНТ. 2014. №6(94) 139
One can also see difference in the shapes of emission
intensity spatial distributions in these figures. In case of
Ar 750.4 nm line, the emission is practically
Fig. 4. Experimental time-averaged spatial distribution
of Ar 811.5 nm line emission intensity across the dis-
charge gap at different Jd
absent in a middle of the discharge gap, whereas Ar
811.5 nm line emission has noticeable value. It is due to
the following: 1) lifetime of 2p1 state is essentially
shorter than that of 1s5 state ( 2 10
-8
s and 10
-6
s [7],
respectively); 2) excitation of 2p1 level is performed by
direct electron hit from ground state with threshold
energy of the process 13.5 eV, and excitation of 2p9
state-by electrons with 2 eV from 1s5 metastable state.
Due to that, Ar (2p1) atoms quickly radiate in the plas-
ma generation zone in vicinity of the discharge elec-
trodes, and electron energy in a middle of the discharge
gap is insufficient for excitation of (2p1) state. Although
argon atoms in 1s5 state originate in the same zone, as
Ar (2p1), they can diffuse to mid-part of the discharge
gap due to essentially longer lifetime and can be effi-
ciently excited there to 2p9 state due to lower excitation
threshold. For the same reason, the maxima of Ar
750.4 nm line emission intensity are somewhat narrower
than those of 811.5 nm line.
Fig. 5. Simulated time-averaged spatial distribution of
electron concentration ne across the discharge gap at
different Jd
Three modes of RF discharge operation can be also
distinguished at calculated time-averaged electrons con-
centration ne in Fig. 5. In α – mode maxima of electron
concentration are situated inside the discharge gap. The-
se maxima correspond to the locations where the most
ionization processes by highly energetic electrons take
place.
By comparison of time-averaged distribution of elec-
tron concentration across the discharge gap calculated
here and in the [8], one can see that the width of space
charge sheath in barrier RF discharge in α –mode are
wider (0.74 mm) than in the argon RF discharge with
the bare metal electrodes (0.47 mm) with the same Jd,
length of discharge gap and frequency of applied volt-
age. The difference is caused by the electrons accumu-
lated on the dielectric barrier surface. At the same time,
in high current γ – mode the space charge width be-
comes equal. This is due to the nature of the γ – mode
which is similar to DC discharge where the width of
space charge are defined by the distance from the cath-
ode to the negative glow which depends mostly on a
product of the pressure value and the discharge gap di-
mension, rather than on material of the cathode.
Fig. 6. Simulated time-averaged spatial distribution of
electron energy across the discharge gap at different
Jd
Mean electron energy distributions across the dis-
charge gap (see Fig. 6) show that in all discharge modes
a zone with the low energy ( 1.8 eV) electrons exists
in the middle of discharge gap. Zones with “hotter”
electrons are located near the discharge electrodes. At
the discharge glow transition from to mode, width
of these zones decreases, and mean electron energy in
these zones grows up.
Fig. 7. Simulated time-averaged spatial distribution of
Ar* concentration across the discharge gap at different
Jd
140 ISSN 1562-6016. ВАНТ. 2014. №6(94)
Behavior of time-averaged concentration of the met-
astable argon atoms Ar* and excimer molecules Ar2*
across the discharge gap demonstrates similar spatial
distribution (Figs. 7, 8). At that, in all discharge modes
Ar2* concentration exceeds that of Ar* by a factor of
5…10. Metastable atoms reach highest density inside
the discharge gap in α–mode, whereas in γ-mode their
maxima are located at about 100 m from the elec-
trodes. Note that in transition mode four sharp maxima
are situated closer to the dielectric surface (although it is
difficult to see them in these log scale graphs). The two
maxima, which are situated closer to the dielectric, cor-
respond to the regions with high energy secondary elec-
trons, and the second pair mainly corresponds to the
electrons heated due to electric field influence. In the
“deep” γ-mode two peaks situated near the dielectric
surface merge into the single one.
Fig. 8. Simulated time-averaged spatial distribution of
Ar2* concentration across the discharge gap at different
Jd
It should be noted that at low pressures free electron
path is longer than the discharge gap, and the metastable
profile has its maximum in the center of discharge gap.
The profile is then the diffusion dominated [9]. At at-
mospheric pressure, this diffusion plays a minor role, as
it is shown in [0].
REFERENCES
1. V.Yu. Bazhenov et al. // Problems of Atomic Science
and Technology. Series“Plasma physics” (19). 2013,
№ 1, p. 177-179.
2. J.J. Shi and M.G. Kong // Journal of Applied Physics
(97). 2005, p. 023306-1 - 023306-6.
3. N. Balcon, G.J.M. Hagelaar, and J.P. Boeuf. Numeri-
cal Model of an Argon Atmospheric Pressure RF Dis-
charge // IEEE Transactions on Plasma Science. 2008,
№ 5, v. 36.
4. Xi-Ming Zhu and Yi-Kang Pu // J. Phys. D: Appl.
Phys. 2010, v. 53, p. 015204-015221.
5. G.J.M. Hagelaar and L.C. Pitchford // Plasma
Sources Sci. Technol. 2005, v. 14, p. 722-733.
6. John B. Boffard, Garrett A. Piech, Mark F. Gehrke,
L.W. Anderson, Chun C. Lin // Physical Review A.
1999, v. 59, p. 2749-2663.
7. Benedikt Niermann. The role of metastable atoms in
radio-frequency micro-plasma jet discharges operated
at atmospheric pressure. Bohum, 2012, p. 57-73.
8. Farouk Tanvir, Farouk Bakhtier, Gutsol Alexander,
Fridman Alexander // Plasma sources Sci. Technol.
2008, v. 17, p. 0350151-15.
8. Marisa Roberto, Helen B. Smith, and John P.
Verboncoeur // IEEE Transactions on Plasma Science.
2003, v. 31, p. 1292-1298.
Article received 23.09.2014
ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЯ ПЛАЗМЕННОГО
ИСТОЧНИКА С ВЧ-БАРЬЕРНЫМ РАЗРЯДОМ В АРГОНЕ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ
В.Ю. Баженов, В.В. Циолко, В.М. Пиун, Р.Ю. Чаплинский, А.И. Кузьмичёв
Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмо-
сферного давления в слаботочном - и сильноточном -режимах установлены експериментально и рассчи-
таны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных эксперимен-
тальных данных и смоделированных пространственно-временных распределений концентраций электронов
и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать
особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда.
ТЕОРЕТИЧНЕ ТА ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ПЛАЗМОВОГО ДЖЕРЕЛА
З ВЧ-БАР’ЄРНИМ РОЗРЯДОМ В АРГОНІ ПРИ АТМОСФЕРНОМУ ТИСКУ
В.Ю. Баженов, В.В. Ціолко, В.М. Піун, Р.Ю. Чаплинський, А. І. Кузьмичoв
Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного
тиску в слабкострумовому - та сильнострумовому -режимах встановлено експериментально та розрахова-
но за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних
даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енер-
гії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в
слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду.
|