Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure

Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2014
Автори: Bazhenov, V.Yu., Tsiolko, V.V., Piun, V.M., Chaplinskiy, R.Yu., Kuzmichev, A.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/81945
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81945
record_format dspace
spelling Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
2015-05-22T17:45:26Z
2015-05-22T17:45:26Z
2014
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 52.80.Pi, 61.30.Hn, 81.65.-b
https://nasplib.isofts.kiev.ua/handle/123456789/81945
Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes.
Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления в слаботочном α- и сильноточном γ-режимах установлены експериментально и рассчитаны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных экспериментальных данных и смоделированных пространственно-временных распределений концентраций электронов и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда.
Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабкострумовому α- та сильнострумовому γ-режимах встановлено експериментально та розраховано за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енергії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Низкотемпературная плазма и плазменные технологии
Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
Теоретическое и экспериментальное исследования плазменного источника с ВЧ-барьерным разрядом в аргоне при атмосферном давлении
Теоретичне та експериментальне дослідження плазмового джерела з ВЧ-бар’єрним розрядом в аргоні при атмосферному тиску
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
spellingShingle Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
Низкотемпературная плазма и плазменные технологии
title_short Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
title_full Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
title_fullStr Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
title_full_unstemmed Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure
title_sort theoretical and experimental investigation of the plasma source with argon rf barrier discharge at atmospheric pressure
author Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
author_facet Bazhenov, V.Yu.
Tsiolko, V.V.
Piun, V.M.
Chaplinskiy, R.Yu.
Kuzmichev, A.I.
topic Низкотемпературная плазма и плазменные технологии
topic_facet Низкотемпературная плазма и плазменные технологии
publishDate 2014
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Теоретическое и экспериментальное исследования плазменного источника с ВЧ-барьерным разрядом в аргоне при атмосферном давлении
Теоретичне та експериментальне дослідження плазмового джерела з ВЧ-бар’єрним розрядом в аргоні при атмосферному тиску
description Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current α and high-current γ modes are determined experimentally and calculated by the hybrid hydro-dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes. Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмосферного давления в слаботочном α- и сильноточном γ-режимах установлены експериментально и рассчитаны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных экспериментальных данных и смоделированных пространственно-временных распределений концентраций электронов и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда. Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабкострумовому α- та сильнострумовому γ-режимах встановлено експериментально та розраховано за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енергії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/81945
citation_txt Theoretical and experimental investigation of the plasma source with argon RF barrier discharge at atmospheric pressure / V.Yu. Bazhenov, V.V. Tsiolko, V.M. Piun, R.Yu. Chaplinskiy, A.I. Kuzmichev // Вопросы атомной науки и техники. — 2014. — № 6. — С. 137-140. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT bazhenovvyu theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure
AT tsiolkovv theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure
AT piunvm theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure
AT chaplinskiyryu theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure
AT kuzmichevai theoreticalandexperimentalinvestigationoftheplasmasourcewithargonrfbarrierdischargeatatmosphericpressure
AT bazhenovvyu teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii
AT tsiolkovv teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii
AT piunvm teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii
AT chaplinskiyryu teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii
AT kuzmichevai teoretičeskoeiéksperimentalʹnoeissledovaniâplazmennogoistočnikasvčbarʹernymrazrâdomvargonepriatmosfernomdavlenii
AT bazhenovvyu teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku
AT tsiolkovv teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku
AT piunvm teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku
AT chaplinskiyryu teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku
AT kuzmichevai teoretičnetaeksperimentalʹnedoslídžennâplazmovogodžerelazvčbarêrnimrozrâdomvargonípriatmosfernomutisku
first_indexed 2025-11-27T05:34:11Z
last_indexed 2025-11-27T05:34:11Z
_version_ 1850799041042972672
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p.137-140. 137 THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE PLASMA SOURCE WITH ARGON RF BARRIER DISCHARGE AT ATMOSPHERIC PRESSURE V.Yu. Bazhenov 1 , V.V. Tsiolko 1 , V.M. Piun 1 , R.Yu. Chaplinskiy 2 , A.I. Kuzmichev 2 1 Institute of Physics NAS of Ukraine, Kyiv, Ukraine; 2 National Technical University of Ukraine “KPI”, Kyiv, Ukraine E-mail: chapok86@ukr.net Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure ar- gon in low-current and high-current modes are determined experimentally and calculated by the hybrid hydro- dynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier dis- charge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes. PACS: 52.80.Pi, 61.30.Hn, 81.65.-b INTRODUCTION In the past decade the capacitive RF atmospheric pressure glow discharges were widely used in many applications, including sterilization, surface and exhaust treatment, and even for creation of layers for liquid crystal alignment [0]. Advantages of such discharge type are low ignition voltage and ability to create dense uniform plasma in relatively large volume. As in the case of low pressure discharges, atmospheric pressure ones can exist in two modes – low-current α mode, and high-currents γ mode. Transition from α to γ mode oc- curs in result of “breakdown” of space charge layers in α mode, which in the case of bare metal electrodes leads to contraction of the discharge, and at subsequent volt- age growth and sufficient power of energy source may lead to arcing [0]. The use of dielectric barriers allows stabilization of the discharge in mode. However, the experimental studies of RF discharges at atmospheric pressure mostly appeared to be difficult due to poor reproducibility of the results obtained in different systems because of small discharge gap and high value of the electric disturbance. Good quantitative predictions could be achieved by the theoretical methods on the basic of the hybrid mod- els of discharge and comparing results with experi- mental data. But theoretical investigations of the RF discharge are mostly dedicated to the helium discharge with bare metal electrodes. At the same time, there are many applications where argon discharge is more pref- erable. The present paper reveals experimental and theoreti- cal investigation of structure and composition of argon RF discharge with the isolated electrodes at atmospheric pressure in low, transition and high current modes. 1. EXPERIMENTAL SET UP AND METHODS The discharge cell was powered by RF generator through the capacitive divider C1-C4 (Fig. 1), which, together with output stage of matching circuit, provided the discharge power supply in current source regime, that is, with pre-determined values of the discharge cur- rent density. The RF voltage waves at the divider input and at both the discharge electrodes were recorded and processed for determining values of current through the discharge cell and voltage at the discharge gap Ud be- tween the barriers. All measurements were done at ar- gon flow rate 3 l/min. Fig. 1. Experimental setup. 1 – DSLR camera/CCD- spectrometer SL40-2-1024USB; 2 – diaphragm; 3 – lens; 4 – plasma in discharge gap; 5 – dielectric barri- ers; 6 – impedance matching unit; 7 – RF generator (13.56 MHz) For observation of transverse structure of the dis- charge emission, optical setup using CCD spectrometer with 25 x 200 m input slit was used. The discharge gap imaging with 1:1 magnification was done by means of quartz achromatic lens with 150 mm focal length and 15 mm diameter. At that, the lens aperture was reduced in direction across the discharge gap by slit having 5 mm width. Such setup provided diffraction-limited resolution of about 50 μm FWHM in the image plane and about 1 cm depth-of-field required for correct ob- servation of the emission from the whole discharge thickness. Spatial spectrum distributions were obtained by the spectrometer movement in direction across the discharge image with about 10 μm precision. The main method of our theoretical investigation was hybrid hydrodynamic model. It is relatively simple in comparison with the full Boltzmann equation and fast in mailto:chapok86@ukr.net 138 ISSN 1562-6016. ВАНТ. 2014. №6(94) comparison with PIC methods which need much more amount of resources and additional approximation for modeling the discharges at atmospheric pressure. This model was based on the continuity equations for concentration of electrons and their energy in discharge gap, at that coefficients in these equations were calcu- lated by solving Boltzmann equation in two-term ap- proximation. Heavy particles were treated by the diffu- sion equation, and electric filed strength was calculated by the Poisson equation. Joule heating, fluid motion of heavy species and influence of impedance matching box were neglected. The system of partial differential equa- tions was solved numerically. Plasma-chemistry con- sists of reactions between e, Ar, Ar* (4s configuration, which contains a resonant and a metastable states), Ar2*, Ar + , Ar2 + . At that, Ar * value is mainly contributed by concentration of long-lived metastable state 1s5 [3]. We chose to treat them as a single compound state Ar * . The reactions cross-sections and rate coefficients are obtained from literature [3, 4] and from the Boltzmann solver BOLSIG+ [0]. 2. RESULTS AND DISCUSSION By comparing of the measured and simulated V-I characteristics (Fig. 2) it is shown that simulated results are in a good agreement with experimental data. Practi- cally linear part on the experimental V-I characteristic corresponds to the low current α – mode with the cur- rent density Jd 36…74 mA/cm 2 . Part with the negative differential resistance corresponds to the transition - mode and the extreme points on experimental curve represent operation in the high current γ – mode. Fig. 2. Experimental and simulated V-I characteristics of the RF discharge Behavior of spatial distribution of the emission in- tensity of argon lines with 750.4 and 811.5 nm wave- length in the low-current, transition and high-current modes is shown in Figures 3 and 4, respectively. Emis- sion line at 750.4 nm originates from 2p1 – 1s2 transi- tion. At that, 2p1 level is mainly excited by direct elec- tron hit from Ar atom ground state (13.5 eV excitation threshold). And the line at 811.5 nm is emitted by tran- sition from 2p9 level to 1s5 one. The excitation of the 2p9 level occurs mainly from 1s5 metastable state by electrons with energy 2 eV. It is due to the following circumstances. Although ratio of the concentrations of metastable atoms to those in ground state is about 10 -5 …10 -3 , at that: 1) maximum cross section value of 1p9 level excitation from metastable state 1s5 exceeds by about an order of magnitude the cross section value of excitation from ground state [6]; 2) relative quantity of electrons with energy 2 eV is essentially bigger than that of electrons with the energy exceeding excitation threshold of 1p9 level from ground state ( 14 eV). Thus, in first approximation, the emission intensity at 750.4 nm is proportional to the plasma density ne, and that at 811.5 nm – to population of metastable atoms 1s5. However, at interpretation of spatial dependencies of emission intensity shown in Figs. 3, 4 one should draw an attention to the following. Excitation rate of Ar states (2p1, 2p9) by electron hit is K ~ ne N f( ) ( )d , where: N is concentration of Ar atoms in ground or metastable state; f( ) is electron energy distribution function; ( ) is excitation cross section of this level. As it is shown by the calculation results (Fig. 6), time- averaged energy of plasma electrons reaches maxima in near-electrode regions, and has minimum value in a midpoint of the discharge gap. Due to that, spatial dis- tributions of emission intensity of Ar lines at 750.4 nm and 811.5 nm in our case are functions of not just the plasma density, but also of mean electron energy . As a result, spatial distributions of emission of these lines are ~ ne and only approximately represent spatial distribu- tions of the plasma density and the concentration of metastable argon atoms. At the same time, positions of the maxima of emission intensity spatial distribution actually coincide with plasma generation zones. Indirect evidence of this is given by a fact that in all discharge glow modes positions of emission intensity maxima for the lines at 750.4 and 811.5 nm practically coincide. As one can see from the Figs. 3 and 4, in the low- current mode maxima of spatial intensity distributions for both lines are located closer to the discharge gap center, which corresponds to zones of plasma generation and electron heating under electric field action. In the transition and the high-current modes the maxima are shifted towards the surfaces of dielectric plates, which is considered to be due to the discharge transition to mode with consequent enhancement of influence of electrons on the processes of plasma generation and electron heating. Fig. 3. Experimental time-averaged spatial distribution of Ar 750.4 nm line emission intensity across the dis- charge gap at different Jd ISSN 1562-6016. ВАНТ. 2014. №6(94) 139 One can also see difference in the shapes of emission intensity spatial distributions in these figures. In case of Ar 750.4 nm line, the emission is practically Fig. 4. Experimental time-averaged spatial distribution of Ar 811.5 nm line emission intensity across the dis- charge gap at different Jd absent in a middle of the discharge gap, whereas Ar 811.5 nm line emission has noticeable value. It is due to the following: 1) lifetime of 2p1 state is essentially shorter than that of 1s5 state ( 2 10 -8 s and 10 -6 s [7], respectively); 2) excitation of 2p1 level is performed by direct electron hit from ground state with threshold energy of the process 13.5 eV, and excitation of 2p9 state-by electrons with 2 eV from 1s5 metastable state. Due to that, Ar (2p1) atoms quickly radiate in the plas- ma generation zone in vicinity of the discharge elec- trodes, and electron energy in a middle of the discharge gap is insufficient for excitation of (2p1) state. Although argon atoms in 1s5 state originate in the same zone, as Ar (2p1), they can diffuse to mid-part of the discharge gap due to essentially longer lifetime and can be effi- ciently excited there to 2p9 state due to lower excitation threshold. For the same reason, the maxima of Ar 750.4 nm line emission intensity are somewhat narrower than those of 811.5 nm line. Fig. 5. Simulated time-averaged spatial distribution of electron concentration ne across the discharge gap at different Jd Three modes of RF discharge operation can be also distinguished at calculated time-averaged electrons con- centration ne in Fig. 5. In α – mode maxima of electron concentration are situated inside the discharge gap. The- se maxima correspond to the locations where the most ionization processes by highly energetic electrons take place. By comparison of time-averaged distribution of elec- tron concentration across the discharge gap calculated here and in the [8], one can see that the width of space charge sheath in barrier RF discharge in α –mode are wider (0.74 mm) than in the argon RF discharge with the bare metal electrodes (0.47 mm) with the same Jd, length of discharge gap and frequency of applied volt- age. The difference is caused by the electrons accumu- lated on the dielectric barrier surface. At the same time, in high current γ – mode the space charge width be- comes equal. This is due to the nature of the γ – mode which is similar to DC discharge where the width of space charge are defined by the distance from the cath- ode to the negative glow which depends mostly on a product of the pressure value and the discharge gap di- mension, rather than on material of the cathode. Fig. 6. Simulated time-averaged spatial distribution of electron energy across the discharge gap at different Jd Mean electron energy distributions across the dis- charge gap (see Fig. 6) show that in all discharge modes a zone with the low energy ( 1.8 eV) electrons exists in the middle of discharge gap. Zones with “hotter” electrons are located near the discharge electrodes. At the discharge glow transition from to mode, width of these zones decreases, and mean electron energy in these zones grows up. Fig. 7. Simulated time-averaged spatial distribution of Ar* concentration across the discharge gap at different Jd 140 ISSN 1562-6016. ВАНТ. 2014. №6(94) Behavior of time-averaged concentration of the met- astable argon atoms Ar* and excimer molecules Ar2* across the discharge gap demonstrates similar spatial distribution (Figs. 7, 8). At that, in all discharge modes Ar2* concentration exceeds that of Ar* by a factor of 5…10. Metastable atoms reach highest density inside the discharge gap in α–mode, whereas in γ-mode their maxima are located at about 100 m from the elec- trodes. Note that in transition mode four sharp maxima are situated closer to the dielectric surface (although it is difficult to see them in these log scale graphs). The two maxima, which are situated closer to the dielectric, cor- respond to the regions with high energy secondary elec- trons, and the second pair mainly corresponds to the electrons heated due to electric field influence. In the “deep” γ-mode two peaks situated near the dielectric surface merge into the single one. Fig. 8. Simulated time-averaged spatial distribution of Ar2* concentration across the discharge gap at different Jd It should be noted that at low pressures free electron path is longer than the discharge gap, and the metastable profile has its maximum in the center of discharge gap. The profile is then the diffusion dominated [9]. At at- mospheric pressure, this diffusion plays a minor role, as it is shown in [0]. REFERENCES 1. V.Yu. Bazhenov et al. // Problems of Atomic Science and Technology. Series“Plasma physics” (19). 2013, № 1, p. 177-179. 2. J.J. Shi and M.G. Kong // Journal of Applied Physics (97). 2005, p. 023306-1 - 023306-6. 3. N. Balcon, G.J.M. Hagelaar, and J.P. Boeuf. Numeri- cal Model of an Argon Atmospheric Pressure RF Dis- charge // IEEE Transactions on Plasma Science. 2008, № 5, v. 36. 4. Xi-Ming Zhu and Yi-Kang Pu // J. Phys. D: Appl. Phys. 2010, v. 53, p. 015204-015221. 5. G.J.M. Hagelaar and L.C. Pitchford // Plasma Sources Sci. Technol. 2005, v. 14, p. 722-733. 6. John B. Boffard, Garrett A. Piech, Mark F. Gehrke, L.W. Anderson, Chun C. Lin // Physical Review A. 1999, v. 59, p. 2749-2663. 7. Benedikt Niermann. The role of metastable atoms in radio-frequency micro-plasma jet discharges operated at atmospheric pressure. Bohum, 2012, p. 57-73. 8. Farouk Tanvir, Farouk Bakhtier, Gutsol Alexander, Fridman Alexander // Plasma sources Sci. Technol. 2008, v. 17, p. 0350151-15. 8. Marisa Roberto, Helen B. Smith, and John P. Verboncoeur // IEEE Transactions on Plasma Science. 2003, v. 31, p. 1292-1298. Article received 23.09.2014 ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЯ ПЛАЗМЕННОГО ИСТОЧНИКА С ВЧ-БАРЬЕРНЫМ РАЗРЯДОМ В АРГОНЕ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ В.Ю. Баженов, В.В. Циолко, В.М. Пиун, Р.Ю. Чаплинский, А.И. Кузьмичёв Характеристики емкостного высокочастотного разряда с изолированными электродами в аргоне атмо- сферного давления в слаботочном - и сильноточном -режимах установлены експериментально и рассчи- таны с помощью гибридной гидродинамической модели. Сравнительный анализ полученных эксперимен- тальных данных и смоделированных пространственно-временных распределений концентраций электронов и тяжелых частиц, средней энергии электронов в ВЧ-барьерном разряде дал возможность интерпретировать особенности структуры разряда в слаботочном α, переходном α-γ и сильноточном γ-режимах разряда. ТЕОРЕТИЧНЕ ТА ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ПЛАЗМОВОГО ДЖЕРЕЛА З ВЧ-БАР’ЄРНИМ РОЗРЯДОМ В АРГОНІ ПРИ АТМОСФЕРНОМУ ТИСКУ В.Ю. Баженов, В.В. Ціолко, В.М. Піун, Р.Ю. Чаплинський, А. І. Кузьмичoв Характеристики ємнісного високочастотного розряду з ізольованими електродами в аргоні атмосферного тиску в слабкострумовому - та сильнострумовому -режимах встановлено експериментально та розрахова- но за допомогою гібридної гідродинамічної моделі. Порівняльний аналіз одержаних експериментальних даних та змодельованих просторово-часових розподілів густин електронів та важких часток, середньої енер- гії електронів у ВЧ-бар’єрному розряді дав можливість інтерпретувати особливості структури розряду в слабкострумовому α, перехідному α-γ та сильнострумовому γ-режимах розряду.