Effect of secondary emission on the afterglow of argon with negatively charged dust particles

A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes....

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Denysenko, I.B., Stefanović, I., Azarenkov, N.A., Burmaka, G.P.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/81952
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Effect of secondary emission on the afterglow of argon with negatively charged dust particles / I.B. Denysenko, I. Stefanović, N.A. Azarenkov, G.P. Burmaka // Вопросы атомной науки и техники. — 2014. — № 6. — С. 157-159. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-81952
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-819522025-02-09T16:52:15Z Effect of secondary emission on the afterglow of argon with negatively charged dust particles Влияние вторичной эмиссии на распад аргоновой плазмы, которая содержит негативно заряженные пылевые частицы Вплив вторинної емісії на розпад аргонової плазми, що містить негативно заряджені пильові частинки Denysenko, I.B. Stefanović, I. Azarenkov, N.A. Burmaka, G.P. Низкотемпературная плазма и плазменные технологии A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes. By using the model and experimental time-dependencies for metastable density and electrode bias, the time-dependencies for electron density in argon/dusty plasma afterglow are calculated. The effect of secondary emission on electron generation in argon/dusty plasma afterglow is analyzed. Разработана теоретическая модель распадающейся пылевой аргоновой плазмы, которая имеет высокую плотность наноразмерных пылинок. Данная модель учитывает генерацию электронов при столкновениях метастабильных атомов между собой и благодаря вторичной эмиссии при столкновениях ионов с электродами. Используя эту модель и экспериментальные временные зависимости для плотности метастабильных атомов и потенциала электродов, рассчитаны временные зависимости для плотности электронов в пылевой распадающейся аргоновой плазме. Проанализировано влияние вторичной эмиссии на генерацию электронов в этой среде. Розроблено теоретичну модель пилової аргонової плазми, що розпадається, та має високу густину порошинок нанорозміру. Дана модель враховує генерацію електронів при зіткнені метастабільних атомів між собою та завдяки вторинній емісії при зіткнені іонів з електродами. Використовуючи цю модель та експериментальні часові залежності для густини метастабільних атомів та потенціалу електродів, розраховано часові залежності для густини електронів у запорошеній аргоновій плазмі, що розпадається. Проаналізовано вплив вторинної емісії на генерацію електронів у цьому середовищі. 2014 Article Effect of secondary emission on the afterglow of argon with negatively charged dust particles / I.B. Denysenko, I. Stefanović, N.A. Azarenkov, G.P. Burmaka // Вопросы атомной науки и техники. — 2014. — № 6. — С. 157-159. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.25.Vy, 52.27.Lw, 51.50.+v, 52.80.Pi https://nasplib.isofts.kiev.ua/handle/123456789/81952 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Denysenko, I.B.
Stefanović, I.
Azarenkov, N.A.
Burmaka, G.P.
Effect of secondary emission on the afterglow of argon with negatively charged dust particles
Вопросы атомной науки и техники
description A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes. By using the model and experimental time-dependencies for metastable density and electrode bias, the time-dependencies for electron density in argon/dusty plasma afterglow are calculated. The effect of secondary emission on electron generation in argon/dusty plasma afterglow is analyzed.
format Article
author Denysenko, I.B.
Stefanović, I.
Azarenkov, N.A.
Burmaka, G.P.
author_facet Denysenko, I.B.
Stefanović, I.
Azarenkov, N.A.
Burmaka, G.P.
author_sort Denysenko, I.B.
title Effect of secondary emission on the afterglow of argon with negatively charged dust particles
title_short Effect of secondary emission on the afterglow of argon with negatively charged dust particles
title_full Effect of secondary emission on the afterglow of argon with negatively charged dust particles
title_fullStr Effect of secondary emission on the afterglow of argon with negatively charged dust particles
title_full_unstemmed Effect of secondary emission on the afterglow of argon with negatively charged dust particles
title_sort effect of secondary emission on the afterglow of argon with negatively charged dust particles
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Низкотемпературная плазма и плазменные технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/81952
citation_txt Effect of secondary emission on the afterglow of argon with negatively charged dust particles / I.B. Denysenko, I. Stefanović, N.A. Azarenkov, G.P. Burmaka // Вопросы атомной науки и техники. — 2014. — № 6. — С. 157-159. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT denysenkoib effectofsecondaryemissionontheafterglowofargonwithnegativelychargeddustparticles
AT stefanovici effectofsecondaryemissionontheafterglowofargonwithnegativelychargeddustparticles
AT azarenkovna effectofsecondaryemissionontheafterglowofargonwithnegativelychargeddustparticles
AT burmakagp effectofsecondaryemissionontheafterglowofargonwithnegativelychargeddustparticles
AT denysenkoib vliânievtoričnojémissiinaraspadargonovojplazmykotoraâsoderžitnegativnozarâžennyepylevyečasticy
AT stefanovici vliânievtoričnojémissiinaraspadargonovojplazmykotoraâsoderžitnegativnozarâžennyepylevyečasticy
AT azarenkovna vliânievtoričnojémissiinaraspadargonovojplazmykotoraâsoderžitnegativnozarâžennyepylevyečasticy
AT burmakagp vliânievtoričnojémissiinaraspadargonovojplazmykotoraâsoderžitnegativnozarâžennyepylevyečasticy
AT denysenkoib vplivvtorinnoíemísíínarozpadargonovoíplazmiŝomístitʹnegativnozarâdženípilʹovíčastinki
AT stefanovici vplivvtorinnoíemísíínarozpadargonovoíplazmiŝomístitʹnegativnozarâdženípilʹovíčastinki
AT azarenkovna vplivvtorinnoíemísíínarozpadargonovoíplazmiŝomístitʹnegativnozarâdženípilʹovíčastinki
AT burmakagp vplivvtorinnoíemísíínarozpadargonovoíplazmiŝomístitʹnegativnozarâdženípilʹovíčastinki
first_indexed 2025-11-28T04:54:47Z
last_indexed 2025-11-28T04:54:47Z
_version_ 1850008611636379648
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 157-159. 157 EFFECT OF SECONDARY EMISSION ON THE AFTERGLOW OF ARGON WITH NEGATIVELY CHARGED DUST PARTICLES I.B. Denysenko1, I. Stefanović2, N.A. Azarenkov1, G.P. Burmaka1 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2Institute of Physics, University of Belgrade, Belgrade, Serbia E-mail: idenysenko@yahoo.com A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes. By using the model and experimental time-dependencies for metastable density and electrode bias, the time-dependencies for electron density in argon/dusty plasma afterglow are calculated. The effect of secondary emission on electron generation in argon/dusty plasma afterglow is analyzed. PACS: 52.25.Vy, 52.27.Lw, 51.50.+v, 52.80.Pi INTRODUCTION In the last two decades plasmas with nano- and micrometre-sized (dust) particles have been extensively studied. However, most of the studies are focused on the steady-state plasma regime [1-3]. In contrast, the properties of dusty plasmas in the afterglow regime are still not well studied, especially of the plasmas with large dust density where negative charge on dust particles is larger than free electron density edd nZn ≥ . en , dn and dZ are the electron density, dust density and dust charge, respectively. In [4, 5], experimental results on plasma afterglow with large dust density are presented. It was found that at the very beginning of the plasma decay the electron density increased unexpectedly. First, the increase of en was attributed to the releasing of electrons from dust particles by secondary emission in collisions of reactive species with dusts [4, 5]. Later on, it was shown that the Ar metastable-metastable collisions (metastable pooling) can be the source of the observed electron density increase [6, 7]. Recent experiments on plasma afterglow with large dust density revealed the negative electrode voltage in the afterglow sufficiently large to produce secondary electrons by collisions of positive ions with electrodes. This also can increase en at the very beginning of the plasma decay [8, 9]. In this paper, we study the effect of the secondary electron emission from electrodes on the properties of argon/dusty plasma afterglow with large dust density. The study is carried out for 0.1 mbar argon plasma generated by a capacitively coupled symmetrically driven RF discharge between two 30 cm diameter electrodes with 7 cm gap, the same as that used in experiments of Refs. [4, 5]. We will compare: i) the time-dependencies for density of electrons calculated by taking into account the secondary emission from electrodes ii) the time-dependencies of electron density without secondary emission and iii) electron density measured in the experiment. THEORETICAL MODEL AND ASSUMPTIONS Let us consider the plasma of radius R=15 cm and height L= 7 cm, consisting of singly charged positive ions (Ar+) with density ni, negatively charged dust particles with density nd, radius ad and mean (averaged over all particles) charge Zd (in units of electron charge e), ground-state argon atoms (Ar0) with density na and metastable argon atoms (Arm) with density nm. It is assumed that there are three groups of electrons in the plasma afterglow: i) thermal electrons with Maxwellian distribution and characterized by electron temperature Te and density ne, ii) “energetic” electrons generated by metastable pooling with density nef and energies about 7.3 eV [6], and iii) secondary electrons generated on electrodes with density nh and energies about the electrode voltage. We assume that soon after switching of the RF power the electron temperature decays exponentialy according to )/exp()( 0 Tee tTtT τ−= , where t is the time, 0eT is the electron temperature in power-on phase and sT μτ 50= is the Te´s decay time [5,6]. We assume that Te can not be smaller than a certain temperature aftT = 0.1 eV [10], i. e. the electron temperature stays constant after it reaches aftT . The potentials of a cylindrical metal wall and the electrode potential with respect to bulk plasma are ew T7.4−=Φ and ,wfel VU Φ+≈ respectively [11]. fV is the electrode potential with respect to the cylindrical wall [11]. The electrode potentials as a function of time were measured for dust- free and dusty plasma afterglows (Fig. 1) [8, 9]. The density of thermal electrons in the plasma afterglow is governed by the following equation: ./ )(/ * * de e deweme i mefef hhha i ahm i mhea i ae nnKτnnnK+n n+nnKnK+nnK=tn −− ++∂∂ ν ν (1) Here, i aK is the rate for ionization of ground-state atoms by Maxwellian electrons, i mhK and i ahK are the rates for ionization of metastable atoms and ground-state atoms by secondary electrons, respectively. * hν and * fν are the 158 ISSN 1562-6016. ВАНТ. 2014. №6(94) frequencies determining the termalization of electrons due to inelastic collisions of secondary and energetic electrons, respectively. i meK is the rate for ionization of Ar metastable atoms by thermal electrons. ewτ is the electron diffusion time constant. e dK is the rate for collection of thermal electrons by dust particles, which is calculated by orbital motion limited (OML) theory. Fig. 1. The time-dependence of electrode voltages Vf in the dust-free (curve 1) and dusty (curve 2) plasma afterglows The balance equation for energetic electrons is [7]: ,// *2 fwefdef ef deffmmef nnnKnnktn τν −−−=∂∂ (2) where km is the rate for electron production in metastable pooling. ef dK is the rate for collection of energetic electrons by dust particles, and fwτ is the time characterizing the escape of energetic electrons to the walls. The balance equation for secondary electrons is: hwhdh h dhhiwiih nnnKnntn τντγ /// * −−−=∂∂ . (3) The first term on the right-hand side in (3) describes generation of secondary electrons on the electrodes. Here, iγ is the effective secondary emission yield, and iwτ is the ion diffusion time constant. The second term accounts for the thermalization of secondary electrons in inelastic collisions. The third term on the right-hand side in (3) describes the collection of secondary electrons by dust particles with the rate h dK . To calculate the rates e dK , ef dK and h dK in (1)-(3), one has to know the dust particle charge. dZ is found from the balance equation for dust charging: i i dh h def ef de e dd nKnKnKnKtZ −++=∂∂ / , (4) where i dK is the rate for collection of ions by dust particles. The time-dependence for ion density in the afterglow is described by the ion balance equation: ./ )(/ 2 di i diwimm me i meha i ahm i mhea i ai nnKτnnk nnK+nnKnK+nnK=tn −− ++∂∂ (5) The plasma is assumed to be quasi-neutral, or ddhefei nZnnnn +++= . (6) Equations (1) - (6) are solved numerically. The time dependencies for metastable density and electrode voltage in the afterglow are taken from the experiment [7-9], while the dust radius and ion density for the power-on phase are assumed to be known. In particular, the time-dependence for the spatially-averaged Ar metastable density can be approximated as )/exp()0()( mmm tntn τ−×= , where )0(mn is the metastable density in the power-on phase and mτ is the decay time for metastable density [7]. The procedure of calculation is similar to that used in [6]. RESULTS Using the analytical expressions (1)-(6), we have calculated plasma parameters (the densities of thermal, energetic and secondary electrons, ion density and dust charge) as a function of time in the dusty plasma afterglow. The calculated decay of spatially averaged thermal electron density and the experimental results of electron decay are compared in Fig. 2. The time-dependence for ne is calculated for ad = 50 nm, nd =3.5×107 cm-3, p = 0.1 mbar, Tg= 366 K and 1.0=iγ . Fig. 2. The time-dependence for ne in dusty plasma afterglow, measured in the experiment (curve 1) and calculated using the model (curve 2) One can see from Fig. 2 that the calculated electron density follows well the experimental value. However, the calculated ne(t) dependence has a peak at 1≈t ms, while the peak for experimental electron density is at 5.0≈t ms. Moreover, for 1>t ms, the decrease of the calculated electron density with time is faster than that in the experiment. We belive that our model underestimates the electron temperature at the begining of the afterglow (for t < 1 ms) and overestimates the electron loss in the late afterglow (for t > 1 ms). Next, we analysed how metastable pooling and secondary electron emission from the electrodes affect the electron density in the afterglow. To understand the role of the electron production processes, we made calculations with different simplifications. First, we considered the case when the secondary emission is absent, while the metastable pooling takes place. In Fig. 3, the ne(t) dependence calculated for 0=iγ (curve 2) is compared with that for 1.0=iγ (curve 1). One can see that the secondary emission increases the electron density. The peak density at 1.0=iγ is about 15 % larger than that at 0=iγ . In the case when the metastable pooling is absent (km=0) and the secondary emission takes place ( 1.0=iγ ), it was found that the thermal electron density decreases rapidly with time (see curve 3 in Fig. 3). Thus, the effect of secondary electron emission is less important than ISSN 1562-6016. ВАНТ. 2014. №6(94) 159 metastable pooling in argon/dusty plasma afterglow. Note that nearly the same time-dependence for ne(t) can be obtained by excluding the secondary electron emission ( 0=iγ ) but decreasing the dust density down to nd =3.25×107 cm-3. Fig. 3. The time-dependences for ne calculated using different assumptions in the model In conclusion, we have calculated the time- dependencies for electron density in argon/dusty plasma afterglow by using the model and experimental time- dependencies for metastable density and electrode voltage. The effect of secondary electron emission from the electrodes on the electron behaviour in argon/dusty plasma afterglow has been estimated by varying secondary emission yields. It has been found that the secondary electron emission is less important than argon metastable pooling. REFERENCES 1. A. Bouchoule. Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing / Еd by. New York. ”Wiley”, 1999, p. 418. 2. I. Denysenko, K. Ostrikov, M.Y. Yu, N.A. Azarenkov // Phys. Rev. E. 2006, v. 74, p. 036402. 3. I. Denysenko, M.Y. Yu, L. Stenflo, S. Xu // Phys. Rev. E. 2005, v. 72, p. 016405. 4. J. Berndt et. al. Anomalous behaviour of the electron density in a pulsed complex plasma // Plasma Sources Sci. Technol. (15). 2006, p. 18. 5. I. Stefanović et al. Secondary electron emission of carbonaceous dust particles // Phys. Rev. E. 2006, v. 74, p. 026406. 6. I. Denysenko et al. // J. Phys. D: Appl. Phys. 2011, v. 44, p. 205204. 7. I.B. Denysenko et al. Discharging of dust particles in the afterglow of plasma with large dust density // Phys. Rev. E. 2013, v. 88, p. 023104. 8. B. Sikimić, I. Stefanović, I.B. Denysenko, J. Winter. A non-invasive technique to determine ion fluxes and ion densities in reactive and non-reactive pulsed plasmas // Plasma Sources Sci. Technol. 2013, v. 22, p. 045009. 9. B. Sikimić et al. Dynamics of pulsed reactive RF discharges in response to thin film deposition // Plasma Sources Sci. Technol. 2014, v. 23, p. 025010. 10. V.I. Demidov, C.A. DeJoseph, A.A. Kudryavtsev. Anomalously high near-wall sheath potential drop in a plasma with nonlocal fast electrons // Phys. Rev. Lett. 2005, v. 95, p. 215002. 11. M. Lieberman, A. Lichtenberg. Principles of Plasma Discharges and Material Processing. New York: “Wiley”, 2005, p. 757. Article received 19.09.2014 ВЛИЯНИЕ ВТОРИЧНОЙ ЭМИССИИ НА РАCПАД АРГОНОВОЙ ПЛАЗМЫ, КОТОРАЯ СОДЕРЖИТ НЕГАТИВНО ЗАРЯЖЕННЫЕ ПЫЛЕВЫЕ ЧАСТИЦЫ И.Б. Денисенко, И. Стефанович, Н.А. Азаренков, Г.П. Бурмака Разработана теоретическая модель распадающейся пылевой аргоновой плазмы, которая имеет высокую плотность наноразмерных пылинок. Данная модель учитывает генерацию электронов при столкновениях метастабильных атомов между собой и благодаря вторичной эмиссии при столкновениях ионов с электродами. Используя эту модель и экспериментальные временные зависимости для плотности метастабильных атомов и потенциала электродов, рассчитаны временные зависимости для плотности электронов в пылевой распадающейся аргоновой плазме. Проанализировано влияние вторичной эмиссии на генерацию электронов в этой среде. ВПЛИВ ВТОРИННОЇ ЕМІСІЇ НА РОЗПАД АРГОНОВОЇ ПЛАЗМИ, ЩО МІСТИТЬ НЕГАТИВНО ЗАРЯДЖЕНІ ПИЛЬОВІ ЧАСТИНКИ І.Б. Денисенко, І. Стефанович, М.О. Азарєнков, Г.П. Бурмака Розроблено теоретичну модель пилової аргонової плазми, що розпадається, та має високу густину порошинок нанорозміру. Дана модель враховує генерацію електронів при зіткнені метастабільних атомів між собою та завдяки вторинній емісії при зіткнені іонів з електродами. Використовуючи цю модель та експериментальні часові залежності для густини метастабільних атомів та потенціалу електродів, розраховано часові залежності для густини електронів у запорошеній аргоновій плазмі, що розпадається. Проаналізовано вплив вторинної емісії на генерацію електронів у цьому середовищі.