Penning traps for confinement and cooling of charged particles
The parameters of confinement of trapped charged particles are compared for self-consistent electromagnetic traps and for traditional and electromagnetic traps. The possibilities to control the trapped particles dynamics are found, which allows more effective particle confinement. The main attention...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2015 |
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/82064 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Penning traps for confinement and cooling of charged particles / I.K. Tarasov, M.I. Tarasov, D.A. Sitnikov, M.A. Lytova, V.M. Lystopad, N.V. Lymar // Вопросы атомной науки и техники. — 2015. — № 1. — С. 45-48. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82064 |
|---|---|
| record_format |
dspace |
| spelling |
Tarasov, I.K. Tarasov, M.I. Sitnikov, D.A. Lytova, M.A. Lystopad, V.M. Lymar, N.V. 2015-05-24T13:39:49Z 2015-05-24T13:39:49Z 2015 Penning traps for confinement and cooling of charged particles / I.K. Tarasov, M.I. Tarasov, D.A. Sitnikov, M.A. Lytova, V.M. Lystopad, N.V. Lymar // Вопросы атомной науки и техники. — 2015. — № 1. — С. 45-48. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.27.Jt https://nasplib.isofts.kiev.ua/handle/123456789/82064 The parameters of confinement of trapped charged particles are compared for self-consistent electromagnetic traps and for traditional and electromagnetic traps. The possibilities to control the trapped particles dynamics are found, which allows more effective particle confinement. The main attention is paid to methods of controlling the dynamics of charge particles in the trap. Resistive cooling of particles is considered as the main cooling mechanism. Производится сравнение параметров удержания заряженных частиц в конфигурациях самосогласованной электромагнитной ловушки и традиционных электромагнитных ловушек. Показаны возможности управления динамикой удерживаемых частиц, что позволяет более эффективно удерживать и охлаждать их. Основное внимание уделено методам контроля динамики заряженных частиц в ловушке. В качестве основного рассматривается резистивный механизм охлаждения частиц. Робиться порівняння параметрів утримання заряджених частинок у конфігураціях самоузгодженої електромагнітної пастки і традиційних електромагнітних пасток. Показані можливості управління динамікою утримуваних частинок, що дозволяє ефективніше утримувати і охолоджувати їх. Основна увага приділена методам контролю динаміки заряджених частинок у пастці. В якості основного розглядається резистивний механізм охолодження частинок. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Магнитное удержание Penning traps for confinement and cooling of charged particles Ловушки Пеннинга для удержания и охлаждения заряженных частиц Пастки Пенінга для утримання і охолодження заряджених частинок Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Penning traps for confinement and cooling of charged particles |
| spellingShingle |
Penning traps for confinement and cooling of charged particles Tarasov, I.K. Tarasov, M.I. Sitnikov, D.A. Lytova, M.A. Lystopad, V.M. Lymar, N.V. Магнитное удержание |
| title_short |
Penning traps for confinement and cooling of charged particles |
| title_full |
Penning traps for confinement and cooling of charged particles |
| title_fullStr |
Penning traps for confinement and cooling of charged particles |
| title_full_unstemmed |
Penning traps for confinement and cooling of charged particles |
| title_sort |
penning traps for confinement and cooling of charged particles |
| author |
Tarasov, I.K. Tarasov, M.I. Sitnikov, D.A. Lytova, M.A. Lystopad, V.M. Lymar, N.V. |
| author_facet |
Tarasov, I.K. Tarasov, M.I. Sitnikov, D.A. Lytova, M.A. Lystopad, V.M. Lymar, N.V. |
| topic |
Магнитное удержание |
| topic_facet |
Магнитное удержание |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Ловушки Пеннинга для удержания и охлаждения заряженных частиц Пастки Пенінга для утримання і охолодження заряджених частинок |
| description |
The parameters of confinement of trapped charged particles are compared for self-consistent electromagnetic traps and for traditional and electromagnetic traps. The possibilities to control the trapped particles dynamics are found, which allows more effective particle confinement. The main attention is paid to methods of controlling the dynamics of charge particles in the trap. Resistive cooling of particles is considered as the main cooling mechanism.
Производится сравнение параметров удержания заряженных частиц в конфигурациях самосогласованной электромагнитной ловушки и традиционных электромагнитных ловушек. Показаны возможности управления динамикой удерживаемых частиц, что позволяет более эффективно удерживать и охлаждать их. Основное внимание уделено методам контроля динамики заряженных частиц в ловушке. В качестве основного рассматривается резистивный механизм охлаждения частиц.
Робиться порівняння параметрів утримання заряджених частинок у конфігураціях самоузгодженої електромагнітної пастки і традиційних електромагнітних пасток. Показані можливості управління динамікою утримуваних частинок, що дозволяє ефективніше утримувати і охолоджувати їх. Основна увага приділена методам контролю динаміки заряджених частинок у пастці. В якості основного розглядається резистивний механізм охолодження частинок.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82064 |
| citation_txt |
Penning traps for confinement and cooling of charged particles / I.K. Tarasov, M.I. Tarasov, D.A. Sitnikov, M.A. Lytova, V.M. Lystopad, N.V. Lymar // Вопросы атомной науки и техники. — 2015. — № 1. — С. 45-48. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT tarasovik penningtrapsforconfinementandcoolingofchargedparticles AT tarasovmi penningtrapsforconfinementandcoolingofchargedparticles AT sitnikovda penningtrapsforconfinementandcoolingofchargedparticles AT lytovama penningtrapsforconfinementandcoolingofchargedparticles AT lystopadvm penningtrapsforconfinementandcoolingofchargedparticles AT lymarnv penningtrapsforconfinementandcoolingofchargedparticles AT tarasovik lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT tarasovmi lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT sitnikovda lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT lytovama lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT lystopadvm lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT lymarnv lovuškipenningadlâuderžaniâiohlaždeniâzarâžennyhčastic AT tarasovik pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok AT tarasovmi pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok AT sitnikovda pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok AT lytovama pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok AT lystopadvm pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok AT lymarnv pastkipeníngadlâutrimannâíoholodžennâzarâdženihčastinok |
| first_indexed |
2025-11-25T23:32:43Z |
| last_indexed |
2025-11-25T23:32:43Z |
| _version_ |
1850587150468251648 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №1(95)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 45-48. 45
PENNING TRAPS FOR CONFINEMENT AND COOLING OF CHARGED
PARTICLES
I.K. Tarasov, M.I. Tarasov, D.A. Sitnikov, M.A. Lytova
1
, V.M. Lystopad, N.V. Lymar
Institute of Plasma Physics of the NSC "Kharkov Institute of Physics and Technology",
Kharkov, Ukraine;
1
V.N. Karazin Kharkov National University, Kharkiv, Ukraine
E-mail: itarasov@ipp.kharkov.ua
The parameters of confinement of trapped charged particles are compared for self-consistent electromagnetic
traps and for traditional and electromagnetic traps. The possibilities to control the trapped particles dynamics are
found, which allows more effective particle confinement. The main attention is paid to methods of controlling the
dynamics of charge particles in the trap. Resistive cooling of particles is considered as the main cooling mechanism.
PACS: 52.27.Jt
INTRODUCTION
The main parameters of confinement and cooling of
trapped charged particles are compared for dynamic
electro-magnetic traps and for more traditional magnetic
and electrostatic traps [1, 2]. For the first case the
possibilities to control the trapped particles dynamics
are found, what allows more effective particles
confinement and cooling.
We consider a self-consistent electro-magnetic trap
as one of the most promising implementation of the
mentioned above concept. Different methods of
controlling the dynamics of charge particles in the trap
are analyzed. In particular the opportunity of controlling
the trapped particles dynamics by introducing an
additional spatial electrostatic potential is considered.
Resistive cooling of particles is considered as the main
cooling mechanism [3, 4].
It is noted that different variants of self-consistent
electro-magnetic traps can be realized in conditions of
the Earth atmosphere and space.
In our work, the experimental results on capture and
confinement of non-neutral particles are reviewed
during the passage of a pulse electron beam through the
drift space. In the previous publications, during the
injection and drift of electron beam with broad
distribution by velocities ('hot beam') in the drift
chamber, situated in homogeneous magnetic field, the
accumulation and confinement of particles in central
part of the drift space were observed. This could be
detected by measuring the relaxation time of particles in
this region after the pulse of injection had finished. The
capture and the confinement of particles in
homogeneous longitudinal magnetic field happen due to
the formation of the non-stationary virtual cathode and,
as a consequence, double sagging of the potential. Due
to the dynamics of particles in the drift space a potential
pit is formed into which the 'coldest' particles are
captured. We report results of experimental research of
properties of the dynamic trap that is a modification of
Penning-Malmberg trap.
EXPERIMENTAL SETUP
The scheme of experimental setup is shown on
Fig. 1. The main beam was generated by the electron
gun. Such gun consists from indirectly heated cathode
and anode metal grid. The injection of electron beam
was provided by applying of negative voltage pulse
(injection pulse) to the cathode. The form of anode grid
was chosen specially for obtaining the required form of
electron beam (hollow cylinder). The main beam was
injected into the drift space (a brass tube of length L =
150 cm and diameter D = 4 cm) at whose entrance and
exit were flat metal grids. The tube was cut parallel to
the generatrix into two equal halves and was made up of
two sectors of angular extent 180º (π-electrodes). Both
sectors were attached to the leads and used for
diagnostic purposes. The thickness of injected beam was
Δ = 1…2 mm and its diameter was d = 2 cm. The beam
energy was 20…80 eV. The constant longitudinal
magnetic field had a strength of H = 100…2000 Oe.
The magnetic field varied over the length of the drift
tube by less than 5% so we assumed it to be uniform
inside the drift tube. It is also necessary to note that
injector is located near the entrance to the drift tube at
the area of non-uniform magnetic field. The range of
working pressures was 10
-4
…10
-7
Torr.
Diagnostic measurements of axial distribution of
electrostatic potential were made by high-frequency
Langmuir probe. The probe was placed on the mobile
carriage together with a multigrid electrostatic analyzer.
The occurrence and evolution of diocotron oscillations
was detected by π-electrodes. In this experiments we
generated diocotron modes with the azimuthal wave
number l = 1. In this case the oscillations of current
induced on each of the π-electrodes are in opposite
phases. The flat grids located at the entrance and exit of
the drift tube were used for measuring of current input
and output.
The distributions were obtained with the Langmuir
probe, the probe being under floating potential. The
beam current being IB = ICR = 15 mA, distribution of
potential in longitudinal direction has typical shape for
velocity spread electron beams [4], distribution of
'bell'type. Such a potential distribution leads to the
accelerated extractions of electrons from the drive space
caused by electric fields of the spatial charge of the
beam. Radial localization of the direct flow of electrons
coincides with that of the reverse flow in the drive
space. The beam current being increased
ISSN 1562-6016. ВАНТ. 2015. №1(95) 46
IB ICR = 17 mA, the form of potential in the drive
space essentially changes with formation of a potential
pit for electrons in the drive space center (Fig. 2,
curve 1). Transformation of the potential distribution in
longitudinal direction is accompanied by excitation of
the oscillations of the beam's density, which have been
identified in as the diocotron oscillations with l = 1
mode [5, 6].
Fig. 1. Schematic of the experimental setup:
1 electron beam; 2 drift tube; 3 vacuum chamber;
4 electron gun; 5 entrance grid; 6 exit grid;
7 collector; 8 carriage; 9 high-frequency
Langmuir probe; 10 electrostatic analyzer
Fig. 2. Distributions potential (1), and diocotron
oscillations (2) in the drive space,
UB = 30 V, IB = 17 mA, H = 1 kOe
DYNAMICS OF PARTICLES EJECTION
DEVELOPMENT
The ejection of charged particles across the magnetic
field was observed during the transportation of
cylindrical electron beam through the space of drift.
Such beam had a strong dispersion in velocities.
The space of drift was limited axially by two π-
electrodes and radially by two measuring grids. Figure
represents the oscillograms of signals obtained from π-
electrodes. This oscillograms displays the dynamics of
particles ejection process and diocoron instability
development.
Fig. 3 displays the signals obtained in the absence of
instability. Asymmetrical pulses were observed due to
non-symmetrical beam injection in the drift chamber.
The occurrence of diocotron oscillations was always
preceded by the ejection process. Such process arises
initially at the end of the injection pulse as a small pulse
of voltage. In case of beam current increasing the
ejection pulse moves towards the first front injection
pulse. During such movement the pulse of ejection
becomes shortened. It is also necessary to note that the
diocotron oscillations were not only observed during the
pulse of injection. So called “tails” of damped diocotron
oscillations were formed after the pulse of injection. In
case of beam current or energy increasing the duration
of such tails grows together with the injection pulse
amplitude. Finally "tail" duration may exceed the length
injection pulse. Further growth of the injection pulse
amplitude reduces to transition of the diocotron
oscillations into a noise mode [7].
Fig. 3. Oscillograms of signals from π-electrodes.
Sensitivity 0.05 V/div; broach 0.2 ms/div; H=1 кOe.
Amplitudes of injection impulses: U1=20 V; U2=21 V;
U3=23.5 V; U4=25 V; U5=27.5 V; U6=30 V;
U7=32.5 V; U8=35 V
THE DYNAMICS OF LONGITUDINAL
AND CROSS CURRENTS
Fig. 4. Signals obtained from π-electrode and
measuring grid. Sensitivity of the top trace 0.5 V/div;
sensitivity of the bottom trace 2 V/div;
broach 0.1 ms/div; Н=1кOe
There is a strong connection between variations of
longitudinal and cross currents during the injection
pulse energy changing. The oscillograms of such
currents are presented on Fig. 3. Here the top traces
represent the signal from π-electrodes while the bottom
traces represent the signal from the measuring grid. It is
easy to notice from given oscillograms (Fig. 3(1)) that
the ejection pulse is followed by the stage of
ISSN 1562-6016. ВАНТ. 2015. №1(95) 47
longitudinal output current growth. Fig. 3(2), 3(3)
displays the time shortening of signals observed on π-
electrodes. From Fig. 3(4) one can conclude that the
longitudinal output current growth stage is followed by
satiation stage. After the electrons cross-ejection the
amplitude of π-electrode signal is also established on the
certain level which does not change during the pulse of
injection. Fig. 4 gives a rough idea about dynamics of
longitudinal and cross currents in considered system.
PENNING TRAP WITH A CENTRAL
ELECTRODE
Fig. 5. The scheme of experimental setup:
a modification with an axial electrode as a metal
string; b modification with an axial multielement
electrode
In case Fig. 5,a an axial electrode as a filament is
connected with a corps through the resistor of loading of
R. Executed functions as an active electrode (on him
potential was given) so diagnostic. In case Fig. 5,b axial
electrodes were used on one axis. Every electrode is
connected with a corps through the resistor of R and
also could be used as an active electrode or diagnostic.
STUDIES WITH A SINGLE AXIAL
ELECTRODE
Fig. 6 shows the injection current pulses observed on
the entrance grid of the drift tube, fluctuations registered
by π-electrodes, different polarity voltage pulses applied
to the central electrode. The negative polarity pulse with
amplitude U1 =-10 V was applied to the central
electrode at the same time with the beam injection
pulse. Then during the time period much shorter than
diocotron oscillation period it was changed up to value
U2 =+20 V. After the ending injection pulse the central
electrode voltage was supported on the certain level U1
during the time period t3. After that it was rapidly
declined to the value U3 = -20 V. In this experiment the
sum t1 + t2 + t3 was constant.
Fig. 6. The oscillograms of current Iin on the entrance
grid (1), current I1 and I2 on π-electrodes (2, 3, 5, 6,
8, 9) and negative pulses on the central electrode
(4, 7, 10): 4 t1 = 0.6 ms, U1 = -20 V, t2 = 1.0 ms,
U2 = -14 V, t3 = 0.25 ms, U3 = 0 V;
7 t1 = 0.75 ms, U1 =-20 V, t2 = 0.85 ms, U2 =-14 V,
t3 = 0.4 ms, U3 = 0 V; 10 t1 = 0.6 ms, U1 =-20 V,
t2 = 1.0 ms, U2 =-14 V, t3 = 0.25 ms, U3 = 0 V.
Broach – 0.2 ms/point; sensitivity – 0.01 V / point (2, 3,
5, 6, 8, 9), 10 V/point (4, 7, 10)
The presence of positive polarity voltage pulse on
the central electrode does not excites the diocotron
instability. And the variation of the pulse duration does
not affect on the qualitative picture of observed
phenomena. Thus one could conclude that the appliance
of positive polarity voltage pulse suppresses the
diocotron instability.
STUDIES WITH A MULTIELEMENT AXIAL
ELECTRODE
The experimental study was provided for two
regimes of setup operation:
- positive polarity voltage pulse was applied to the axial
electrode element 3 with the certain delay after injection
beginning. Other elements were grounded through the
certain resistance (Fig. 7,a);
- positive polarity potential was applied to the axial
electrode elements 2 and 4. Other elements were
grounded (Fig. 7,b)
Fig. 7. The distributions of potential on the axial
electrode elements
The signal was obtained from π-electrodes using
oscillograph. The oscillograms were similar to
displayed on Fig. 8 for both of observed regimes. The
oscillations detected by π-electrodes were antiphased.
Together with the fact of oscillations frequency
dependence on the magnetic and electric field
intensities, this fact allows to conclude that these
oscillations have a diocotronic character in a mode with
l=1.
Fig. 8 displays that the diocotron oscillations are
excited by the main pulse. The appliance of long
duration additional positive polarity pulse on the axial
electrode elements results in the diocotron frequency
increasing which corresponds to a particles density
increasing.
a
b
ISSN 1562-6016. ВАНТ. 2015. №1(95) 48
Fig. 8. The diocotron oscillations on π -electrodes at
submission of positive polarity voltage pulse on the
axial electrode element. Broach 1 ms/point,
sensitivity 0.01 V/point
The oscillations frequency varies poorly during the
whole pulse. Also during this pulse the amplitude
modulation was observed. After the end of stimulation
pulse the diocotron oscillations frequency and amplitude
damps very slowly. This testifies that confined electrons
are rather cold and after the stimulating pulse
termination they spread slowly along the magnetic field.
Given configuration of charged particles drift differs
from one with a single electrode and allows confining
electrons for a much longer time period [8].
CONCLUSIONS
1. Upon the injection of an electron beam with a
broad velocity distribution into the drift space with a
longitudinal magnetic field the majority of the particles
experiences a reorganization of their movement: they
start moving in the azimuthal direction, having lost their
axial velocity.
2. Such reorganization promotes the occurrence of
sagging of the spatial potential and a virtual cathode as a
consequence, thus changing the dynamics of particles
particles in drift space.
3. An inverse flow of the electrons takes place and a
certain part of particles leave in a radial (ejection).
4. As a result, during the time corresponding to the
front of increase of the current of injection, between two
saggings of the potential a dynamic trap is formed that
can capture 'slow' electrons that are situated in the drift
space upon the occurrence of double sagging.
5. Charged particles (electrons) ejection across the
magnetic field is followed by the process of non-
stationary virtual cathode formation.
6. This formation occurs as result of longitudinal
current limiting provided by the spatial charge of
injected beam.
7. It was noticed, that studied phenomenon always
precedes the formation of potential double sagging
followed by the coherent diocotron oscillations
excitation in the space of drift.
8. Single axial electrode configuration utilization
allows to suppress the diocotron instability due to
influence of cross electric field.
9. Self-consistent electron confinement in the space
of drift may be stimulated using the axis electrode
configuration.
10. The application of multielement axial electrode
allows to accumulate and confine electrons in drift
space for a long enough time period.
REFERENCES
1. J.H. Malmberg and C.F. Driscoll. Long-Time
Containement of Pure Electron Plasma // Phys. Rev.
Lett. 1980, v. 44, № 10, p. 654-657.
2. X.P. Huang, F. Anderegs, E.M. Hollmann,
C.F. Driscoll, and T.M. O'Neil. Steady-State
Confinement of Non-neutral Plasmas by Rotating
Electric Fields // Phys. Rev. Lett. 1997, v. 78, № 5,
p. 875-878.
3. F. Anderegs, E.M. Hollmann, and C.F. Driscoll.
Rotating Field Confinement of Pure Electron Plasmas
Using Trivelpiece-Gould Modes // Phys. Rev. Lett.
1998, v. 81, № 22, p. 4875-4878.
4. E.M. Hollmann, F. Anderegs, and C.F. Driscoll.
Confinement and manipulation of non-neutral plasmas
using rotating wall electric field // Physics of Plasma.
2000, v. 7, № 7, p. 2776-278.
5. A.A. Buzyukov, E.D. Volkov, I.K. Tarasov. Self-
consistent Penning-Malmberg trap // Problems of
Atomic Science and Technology. Series “Plasma
Physics”. 2002, № 4(7), p. 146-148.
6. N.A. Azarenkov, A.A. Bizyukov, V.I. Lapshin,
V.I. Maslov, I.N. Onishchenko, I.K. Tarasov,
M.I. Tarasov // Problems of Atomic Science and
Technology. Series “Plasma Physics” (10). 2005, № 1,
p. 140-142.
7. I.K. Tarasov, D.A. Sytnykov, M.I. Tarasov, E.D. Volkov
// Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2002, № 4 (7), p. 146-148.
8. S.N. Man'kovsky, D.A. Sytnykov, I.K. Tarasov,
I.V. Tkachenko, V.I. Tkachenko // Problems of Atomic
Science and Technology. Series “Plasma Physics” (12).
2006, № 6, p. 213-215.
Article received 01.12.2014
ЛОВУШКИ ПЕННИНГА ДЛЯ УДЕРЖАНИЯ И ОХЛАЖДЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ
И.К. Тарасов, М.И. Тарасов, Д.А. Ситников, М.А. Лытова, В.М. Листопад, Н.В. Лымарь
Производится сравнение параметров удержания заряженных частиц в конфигурациях самосогласованной
электромагнитной ловушки и традиционных электромагнитных ловушек. Показаны возможности
управления динамикой удерживаемых частиц, что позволяет более эффективно удерживать и охлаждать их.
Основное внимание уделено методам контроля динамики заряженных частиц в ловушке. В качестве
основного рассматривается резистивный механизм охлаждения частиц.
ПАСТКИ ПЕНІНГА ДЛЯ УТРИМАННЯ І ОХОЛОДЖЕННЯ ЗАРЯДЖЕНИХ ЧАСТИНОК
І.К. Тарасов, М.І. Тарасов, Д.А. Сітников, М.А. Литова, В.М. Листопад, М.В. Лимарь
Робиться порівняння параметрів утримання заряджених частинок у конфігураціях самоузгодженої
електромагнітної пастки і традиційних електромагнітних пасток. Показані можливості управління
динамікою утримуваних частинок, що дозволяє ефективніше утримувати і охолоджувати їх. Основна увага
приділена методам контролю динаміки заряджених частинок у пастці. В якості основного розглядається
резистивний механізм охолодження частинок.
|