Optimization of self-consistent code for modelling of RF plasma production
The optimization to the radio frequency (RF) module of a self-consistent cylindrical model for plasma production is applied. Optimization includes avoiding repeated calculations and employing a parallelization. To suppress singularities in the lower hybrid resonance (LHR) zone a patching is in the c...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2015 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/82067 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Optimization of self-consistent code for modelling of RF plasma production / V.Е. Moiseenko, Yu.S. Kulyk, T. Wauters, A.I. Lyssoivan // Вопросы атомной науки и техники. — 2015. — № 1. — С. 56-58. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82067 |
|---|---|
| record_format |
dspace |
| spelling |
Moiseenko, V.Е. Kulyk, Yu.S. Wauters, T. Lyssoivan, A.I. 2015-05-24T13:44:54Z 2015-05-24T13:44:54Z 2015 Optimization of self-consistent code for modelling of RF plasma production / V.Е. Moiseenko, Yu.S. Kulyk, T. Wauters, A.I. Lyssoivan // Вопросы атомной науки и техники. — 2015. — № 1. — С. 56-58. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.50.Qt, 52.55.Hc https://nasplib.isofts.kiev.ua/handle/123456789/82067 The optimization to the radio frequency (RF) module of a self-consistent cylindrical model for plasma production is applied. Optimization includes avoiding repeated calculations and employing a parallelization. To suppress singularities in the lower hybrid resonance (LHR) zone a patching is in the code. Проведена оптимизация высокочастотного (ВЧ) модуля самосогласованной цилиндрической модели для создания плазмы. Оптимизация заключалась в отказе от повторных вычислений и использовании распараллеливания. Для подавления сингулярности в области нижнего гибридного резонанса (НГР) в коде использован патчинг. Проведена оптимізація високочастотного (ВЧ) модуля самоузгодженої циліндричної моделі для створення плазми. Оптимізація полягала у відмові від повторних обчислень і використанні розпаралелювання. Для придушення сингулярності в області нижнього гібридного резонансу (НГР) у коді використаний патчінг. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Магнитное удержание Optimization of self-consistent code for modelling of RF plasma production Оптимизация самосогласованного кода для моделирования ВЧ-создания плазмы Оптимізація самоузгодженого коду для моделювання ВЧ-створення плазми Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Optimization of self-consistent code for modelling of RF plasma production |
| spellingShingle |
Optimization of self-consistent code for modelling of RF plasma production Moiseenko, V.Е. Kulyk, Yu.S. Wauters, T. Lyssoivan, A.I. Магнитное удержание |
| title_short |
Optimization of self-consistent code for modelling of RF plasma production |
| title_full |
Optimization of self-consistent code for modelling of RF plasma production |
| title_fullStr |
Optimization of self-consistent code for modelling of RF plasma production |
| title_full_unstemmed |
Optimization of self-consistent code for modelling of RF plasma production |
| title_sort |
optimization of self-consistent code for modelling of rf plasma production |
| author |
Moiseenko, V.Е. Kulyk, Yu.S. Wauters, T. Lyssoivan, A.I. |
| author_facet |
Moiseenko, V.Е. Kulyk, Yu.S. Wauters, T. Lyssoivan, A.I. |
| topic |
Магнитное удержание |
| topic_facet |
Магнитное удержание |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Оптимизация самосогласованного кода для моделирования ВЧ-создания плазмы Оптимізація самоузгодженого коду для моделювання ВЧ-створення плазми |
| description |
The optimization to the radio frequency (RF) module of a self-consistent cylindrical model for plasma production is applied. Optimization includes avoiding repeated calculations and employing a parallelization. To suppress singularities in the lower hybrid resonance (LHR) zone a patching is in the code.
Проведена оптимизация высокочастотного (ВЧ) модуля самосогласованной цилиндрической модели для создания плазмы. Оптимизация заключалась в отказе от повторных вычислений и использовании распараллеливания. Для подавления сингулярности в области нижнего гибридного резонанса (НГР) в коде использован патчинг.
Проведена оптимізація високочастотного (ВЧ) модуля самоузгодженої циліндричної моделі для створення плазми. Оптимізація полягала у відмові від повторних обчислень і використанні розпаралелювання. Для придушення сингулярності в області нижнього гібридного резонансу (НГР) у коді використаний патчінг.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82067 |
| citation_txt |
Optimization of self-consistent code for modelling of RF plasma production / V.Е. Moiseenko, Yu.S. Kulyk, T. Wauters, A.I. Lyssoivan // Вопросы атомной науки и техники. — 2015. — № 1. — С. 56-58. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT moiseenkove optimizationofselfconsistentcodeformodellingofrfplasmaproduction AT kulykyus optimizationofselfconsistentcodeformodellingofrfplasmaproduction AT wauterst optimizationofselfconsistentcodeformodellingofrfplasmaproduction AT lyssoivanai optimizationofselfconsistentcodeformodellingofrfplasmaproduction AT moiseenkove optimizaciâsamosoglasovannogokodadlâmodelirovaniâvčsozdaniâplazmy AT kulykyus optimizaciâsamosoglasovannogokodadlâmodelirovaniâvčsozdaniâplazmy AT wauterst optimizaciâsamosoglasovannogokodadlâmodelirovaniâvčsozdaniâplazmy AT lyssoivanai optimizaciâsamosoglasovannogokodadlâmodelirovaniâvčsozdaniâplazmy AT moiseenkove optimízacíâsamouzgodženogokodudlâmodelûvannâvčstvorennâplazmi AT kulykyus optimízacíâsamouzgodženogokodudlâmodelûvannâvčstvorennâplazmi AT wauterst optimízacíâsamouzgodženogokodudlâmodelûvannâvčstvorennâplazmi AT lyssoivanai optimízacíâsamouzgodženogokodudlâmodelûvannâvčstvorennâplazmi |
| first_indexed |
2025-11-25T22:31:40Z |
| last_indexed |
2025-11-25T22:31:40Z |
| _version_ |
1850566019414753280 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №1(95)
56 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 56-58.
OPTIMIZATION OF SELF-CONSISTENT CODE FOR MODELLING
OF RF PLASMA PRODUCTION
V.Е. Moiseenko
1
, Yu.S. Kulyk
1
, T. Wauters
2
, A.I. Lyssoivan
2
1
Institute of Plasma Physics of the NSC “Kharkov Institute of Physics and Technology",
Kharkov, Ukraine;
2
Laboratory for Plasma Physics ERM/KMS, Association EURATOM-BELGIAN STATE,
1000 Brussels, Belgium
The optimization to the radio frequency (RF) module of a self-consistent cylindrical model for plasma production
is applied. Optimization includes avoiding repeated calculations and employing a parallelization. To suppress
singularities in the lower hybrid resonance (LHR) zone a patching is in the code.
PACS: 52.50.Qt, 52.55.Hc
INTRODUCTION
A self-consistent model of radio-frequency (RF)
plasma production [1] contains transport equations for
plasma density and electron energy, and includes
ionization and excitation by electron impact,
neoclassical transport, direct losses of plasma
(convection to the plasma edge) and the neutral gas
balance. The problem is solved in cylindrical geometry.
The plasma is assumed to be azimuthally symmetrical
and uniformly distributed along plasma column.
In the model the plasma is sustained by RF fields.
The RF heating is calculated solving the Maxwell’s
equations. The part of the code with Maxwell's
equations employs Fourier series in poloidal and
toroidal angles and discretization in the radial direction.
This part calculates the dielectric tensor, applies the
regularity conditions for the electromagnetic fields at
the magnetic axis and the boundary conditions at the
metallic wall. The code uses finite differences for the
balance part and finite elements method for the RF part.
The Maxwell’s equations are written in the form:
,€
ext02
2
jEE
ir
c
(1)
where E is the temporal Fourier harmonic of the electric
field and jext is the density of the external RF (antenna)
electric current.
The plasma dielectric tensor is a function of the
radial coordinate and the plasma density and electron
temperature,
.
00
0
0
,ˆ,,ˆ,ˆ
||
ig
ig
trtrtr
Here α is the index enumerating types of particles.
The Maxwell’s equations are solved at each time
step for the running distributions of the plasma density
and temperature. Discretization of the Maxwell’s
equations over the radial coordinate is performed by the
method of weighted residuals with use of the third-order
finite elements [2, 3].
Discretization is made by integration of the
equations with weight (test) and basis (shape) functions.
Basis functions are: r
R
z
in
im eer eB
3
1 ,
eB R
z
in
im eer3
2 , z
R
z
in
im eer eB
3
3 , where Λ
(3)
(r)
is the Hermitian finite element of the third order, R is
the major radius of the torus.
Weight (test) functions are:
r
R
z
in
im eer
dr
d
eT
3
1
,
eT R
z
in
im eer
r
3
2
,
z
R
z
in
im eer eT
3
3
.
The generating function could be introduced
R
z
in
im eer
3
Φ . Its gradient is the combination of
the test functions
321 TTT
R
n
iim .
PROBLEM OF TREATMENT OF LHR
The point of the lower hybrid resonance (LHR)
||=0 appears in single-ion species plasma at
frequencies higher than ion cyclotron. In ion cyclotron
range of frequencies (ICRF) the characteristic plasma
densities are ne~10
11
cm
-3
. In cold plasma, in the LHR
point the RF field has a singularity. The singularity
cannot be described in finite elements approach and,
after discretization, its existence may result in ill
conditioned problem.
The dispersion of the slow wave is
||2 2 2 2
0 .sw zk k k k
(2)
Here k0=ω/c. This equation determines the propagating
waves )exp()( dxkixAE swx in the WKB limit.
The amplitude of the wave A(x) remains unknown. The
corresponding differential equation for the wave which
one can construct from common sense does not
contribute to determining the amplitude since the
general form of such an equation
0)()()()( 2
xswx EkxDxBExD
dx
d
xB
dx
d
(3)
contains two unknown slowly varying functions B(x)
and D(x) that influence on the amplitude of the solution.
To find them, the analysis of Maxwell’s equations is
necessary.
ISSN 1562-6016. ВАНТ. 2015. №1(95) 57
To separate the slow wave from the fast wave, two
small parameters are used 1,,, 2
0
2
0
22 gkkkk yx
and 1|| . In the analysis, the last
component of Maxwell’s equations is substituted by the
equation ·ε·E = 0
The Maxwell’s equations are:
,02
0
2
0
22 zzyyyxyz E
dx
d
ikgEikE
dx
d
ikEkkk
,02
02
2
2
0 zzyyyxyx EkkEkE
dx
d
E
dx
d
ikgEik
.0|| zzyxyyx EikEigEikigEE
dx
d
(4)
If zero- and first-order terms in and are retained,
then the system becomes
,02
0
22 zzyyxyz E
dx
d
ikE
dx
d
ikEkkk
,0
2
2
yxy E
dx
d
E
dx
d
ik
.0|| zzx EikE
dx
d
(5)
Finally, we have the following equations
0
1
||
2
||
x
sw
x E
k
E
dx
d
dx
d
. (6)
For the propagating wave the WKB solution of this
equation is
)exp(
||
dxki
k
C
E sw
sw
x
,
).exp(
||
dxki
k
kC
E sw
z
sw
z
(7)
Note here that
4/3
xE and
4/1
zE . Thus,
on approach to LHR point both components of the field
increase. This is natural since the group velocity of the
wave decreases but the energy flux should be
unchanged.
The check is to calculate the energy flux
yzxx BE
cc
88
BE to make sure that it
does not change when the wave propagates. For
negligible damping the flux is
2
2
0
8
C
k
kc
z
x
. (8)
It does not depend on the plasma parameters.
To avoid singularities, the patch proportional to δε is
added to the Maxwell’s equations
2
0 ext .(9)z zk r i i E E E e e E j
It is applied at the narrow zone where ||<min (min is a
calculation parameter).
If the solution of Eq. (9) is an analytical function,
the patching changes the solution only in the patching
area and does not influence on the solution outside it.
The solution would not also depend on the patch
magnitude.
In first series of calculations the following formula
for the patch is used
ImRe22
mini
(linear patching). Its application results in constancy of
the || (see curve 2 in Fig. 1) in the patching area.
Parabolic patching (see curve 3 in Fig. 1)
ImRe
2
2Re 2
2
min
min
2
i
is more robust following the results of the numerical
experiments.
Fig. 1 Radial dependence of || in vicinity of LHR
point: 1 – without patching; 2 – with linear patching;
3 – with parabolic patching
The structure of the fields and the convergence
illustrated in Fig. 2.
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
R
e
E
r
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
Im
E
r
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
R
e
E
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
Im
E
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
R
e
E
z
0 5 10 15 20 25
r, cm
0
5
10
15
20
25
Im
E
z
Fig. 2. Example of three calculations with different
mesh node numbers: green is for 101, red is for 201,
blue is for 1001
The three curves correspond to different mesh node
numbers. We see that when the patch is applied the
solution converges with increasing number of mesh
points. The convergence is slower than in regular case.
58 ISSN 1562-6016. ВАНТ. 2015. №1(95)
RF MODULE
The calculations related to the Maxwell’s equations
are comprised into the RF module. It is designed on the
base of 1D RF code [1].
In the numerical code, the RF module is made as a
separate subroutine. The RF module input parameters
are the ion component composition (the ion charges in
units of proton charge, the ion mass number, number of
sorts of ions, ion density radial distributions), the radial
mesh node coordinates and the number of the mesh
points, the magnetic field radial profile, the collision
frequencies and the total input power. The RF power
deposition profile to each ion sort, electrons and to the
LHR zone and the full RF power are the output
quantities.
Operation of the RF module is organized as follows.
On first call it makes reading and storing calculation
parameters (heating frequency, mesh size etc.) written
in the input file and, after this, makes memory
management. The subroutine creates its own adaptive
mesh with mesh node accumulation in the vicinity of
the LHR point. The right-hand side of the Maxwell’s
equations is calculated.
At further calls for each Fourier harmonic the
Maxwell’s equations are projected to the mesh. Using
given plasma density and temperature profiles, the RF
module calculates the dielectric tensor. Further the finite
element algorithm is applied and the matrix of the
system of linear equations is filled. The boundary
conditions are imposed. The proprietary subroutine
makes LU decomposition of the matrix and solves the
algebraic equations. For each Fourier harmonic the
power density is calculated and summed up. After
termination of the loops over Fourier harmonics the
power densities are remapped from the internal mesh to
the external one, the mesh of the balance equations.
OPTIMIZATION
The optimization is applied to the RF module. It
includes avoiding repeated calculations and employing a
parallelization.
Main computational load in the code is due to the
calculation of the electromagnetic fields and absorbed
RF power. In the aspect of avoiding repetition of the
same computations, useful properties of the problem are
as follows:
The dielectric tensor of cold plasma which is
used in the code is independent on the axial and
azimuthal wave numbers m and n. The dielectric tensor
of the plasma is used both in the boundary problem and
in the calculation of the absorbed power.
The operator can be represented as a
second-order polynomial by m and n. After
discretization the polynomial coefficients (matrices) are
calculated once and then used to calculate the matrices
for different Fourier harmonics.
Parallelization of computations can be used in
the calculation of electromagnetic fields for different
Fourier harmonics and in the calculation of the absorbed
RF power since harmonics with different m and n are
uncoupled.
Inside the RF module parallelization directives
implemented using open standard for parallelizing of
programs, OpenMP. The dielectric tensor of the plasma
is calculated only once and stored in memory. Also in
the numerical code, a single calculation of the right-
hand sides is implemented. Parallelization of
calculations of different azimuthal harmonics is used
with OpenMP directives.
DISCUSSION
Patching allows to make a correct calculation of the
RF fields and to determine the specific absorption in the
LHR zone. Application of the patch results in
disappearing fine field structure in the LHR zone and
allows one to avoid spurious solutions.
Test calculations demonstrated that the
optimizations made in the numerical code result in the
acceleration of the code more than 10 times as
compared with the initial non-optimized version.
REFERENCES
1. V.E. Moiseenko, Yu.S. Stadnik, A.I. Lyssoivan,
V.B. Korovin // Plasma Physics Reports. 2013, v. 39,
№ 11, p. 873-881.
2. V.E. Moiseenko // Probl. At. Sci. Technol. Ser.
“Plasma Phys”. 2002, № 4, p. 100.
3. V.E. Moiseenko // Probl. At. Sci. Technol. Ser.
“Plasma Phys”. 2003, № 1, p. 82.
Article received 02.12.2014
ОПТИМИЗАЦИЯ САМОСОГЛАСОВАННОГО КОДА ДЛЯ МОДЕЛИРОВАНИЯ ВЧ-СОЗДАНИЯ
ПЛАЗМЫ
В.Е. Моисеенко, Ю.С. Кулик, Т. Вотерс, А.И. Лысойван
Проведена оптимизация высокочастотного (ВЧ) модуля самосогласованной цилиндрической модели для
создания плазмы. Оптимизация заключалась в отказе от повторных вычислений и использовании
распараллеливания. Для подавления сингулярности в области нижнего гибридного резонанса (НГР) в коде
использован патчинг.
ОПТИМІЗАЦІЯ САМОУЗГОДЖЕНОГО КОДУ ДЛЯ МОДЕЛЮВАННЯ ВЧ-СТВОРЕННЯ ПЛАЗМИ
В.Є. Моісеєнко, Ю.С. Кулик, Т. Вотерс, А.І. Лисойван
Проведена оптимізація високочастотного (ВЧ) модуля самоузгодженої циліндричної моделі для
створення плазми. Оптимізація полягала у відмові від повторних обчислень і використанні
розпаралелювання. Для придушення сингулярності в області нижнього гібридного резонансу (НГР) у коді
використаний патчінг.
|