Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma

The aim of this work is the evaluation of thermodynamic and transport properties of fusion plasmas in an externally applied strong magnetic field (10…103 T). For these purpose the Thomas-Fermi model for substances with a given temperature and density was used. The effect of such strong magnetic fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2015
Hauptverfasser: Kuzenov, V.V., Ryzhkov, S.V., Shumaev, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/82098
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma / V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev // Вопросы атомной науки и техники. — 2015. — № 1. — С. 97-99. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-82098
record_format dspace
spelling Kuzenov, V.V.
Ryzhkov, S.V.
Shumaev, V.V.
2015-05-25T05:55:58Z
2015-05-25T05:55:58Z
2015
Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma / V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev // Вопросы атомной науки и техники. — 2015. — № 1. — С. 97-99. — Бібліогр.: 19 назв. — англ.
1562-6016
PACS: 52.25.Fi, 52.25.Kn, 52.25.Xz, 52.65.-y
https://nasplib.isofts.kiev.ua/handle/123456789/82098
The aim of this work is the evaluation of thermodynamic and transport properties of fusion plasmas in an externally applied strong magnetic field (10…103 T). For these purpose the Thomas-Fermi model for substances with a given temperature and density was used. The effect of such strong magnetic field on the transport properties of plasmas and the view of the inner shells of atoms and ions was analyzed. Isotherms of the pressure and the specific internal energy of the tungsten plasma are obtained. Quantum and exchange corrections to the pressure of this plasma have been taken into account.
Определены термодинамические и транспортные свойства термоядерной плазмы, находящейся в сильном внешнем магнитном поле (10…1000 Тл). Для этой цели использовалась модель Томаса-Ферми для веществ с заданным температурой и плотностью. Проанализировано действие сильного магнитного поля на транспортные свойства плазмы и вид внутренних оболочек атомов и ионов. Построены изотермы давления, удельной внутренней энергии и энтропии плазмы вольфрама. Учтены квантовые и обменные поправки к давлению плазмы.
Визначено термодинамічні і транспортні властивості термоядерної плазми, що знаходиться в сильному зовнішньому магнітному полі (10...1000 Тл). Для цієї мети використовувалася модель Томаса-Фермі для речовин із заданною температурою і щільністю. Проаналізовано дію сильного магнітного поля на транспортні властивості плазми і вид внутрішніх оболонок атомів і іонів. Побудовані ізотерми тиску, питомої внутрішньої енергії і ентропії плазми вольфраму. Враховані квантові і обмінні поправки до тиску плазми.
This work was supported by the Ministry of Education and Science of the Russian Federation (Goszadanie № 13.79.2014/K).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Фундаментальная физика плазмы
Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
Применение модели Томаса-Ферми для определения термодинамических свойств замагниченной плазмы
Застосування моделі Томаса-Фермі для визначення термодинамічних властивостей замагніченої плазми
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
spellingShingle Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
Kuzenov, V.V.
Ryzhkov, S.V.
Shumaev, V.V.
Фундаментальная физика плазмы
title_short Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
title_full Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
title_fullStr Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
title_full_unstemmed Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma
title_sort application of thomas-fermi model to evaluation of thermodynamic properties of magnetized plasma
author Kuzenov, V.V.
Ryzhkov, S.V.
Shumaev, V.V.
author_facet Kuzenov, V.V.
Ryzhkov, S.V.
Shumaev, V.V.
topic Фундаментальная физика плазмы
topic_facet Фундаментальная физика плазмы
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Применение модели Томаса-Ферми для определения термодинамических свойств замагниченной плазмы
Застосування моделі Томаса-Фермі для визначення термодинамічних властивостей замагніченої плазми
description The aim of this work is the evaluation of thermodynamic and transport properties of fusion plasmas in an externally applied strong magnetic field (10…103 T). For these purpose the Thomas-Fermi model for substances with a given temperature and density was used. The effect of such strong magnetic field on the transport properties of plasmas and the view of the inner shells of atoms and ions was analyzed. Isotherms of the pressure and the specific internal energy of the tungsten plasma are obtained. Quantum and exchange corrections to the pressure of this plasma have been taken into account. Определены термодинамические и транспортные свойства термоядерной плазмы, находящейся в сильном внешнем магнитном поле (10…1000 Тл). Для этой цели использовалась модель Томаса-Ферми для веществ с заданным температурой и плотностью. Проанализировано действие сильного магнитного поля на транспортные свойства плазмы и вид внутренних оболочек атомов и ионов. Построены изотермы давления, удельной внутренней энергии и энтропии плазмы вольфрама. Учтены квантовые и обменные поправки к давлению плазмы. Визначено термодинамічні і транспортні властивості термоядерної плазми, що знаходиться в сильному зовнішньому магнітному полі (10...1000 Тл). Для цієї мети використовувалася модель Томаса-Фермі для речовин із заданною температурою і щільністю. Проаналізовано дію сильного магнітного поля на транспортні властивості плазми і вид внутрішніх оболонок атомів і іонів. Побудовані ізотерми тиску, питомої внутрішньої енергії і ентропії плазми вольфраму. Враховані квантові і обмінні поправки до тиску плазми.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/82098
citation_txt Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma / V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev // Вопросы атомной науки и техники. — 2015. — № 1. — С. 97-99. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT kuzenovvv applicationofthomasfermimodeltoevaluationofthermodynamicpropertiesofmagnetizedplasma
AT ryzhkovsv applicationofthomasfermimodeltoevaluationofthermodynamicpropertiesofmagnetizedplasma
AT shumaevvv applicationofthomasfermimodeltoevaluationofthermodynamicpropertiesofmagnetizedplasma
AT kuzenovvv primeneniemodelitomasafermidlâopredeleniâtermodinamičeskihsvoistvzamagničennoiplazmy
AT ryzhkovsv primeneniemodelitomasafermidlâopredeleniâtermodinamičeskihsvoistvzamagničennoiplazmy
AT shumaevvv primeneniemodelitomasafermidlâopredeleniâtermodinamičeskihsvoistvzamagničennoiplazmy
AT kuzenovvv zastosuvannâmodelítomasafermídlâviznačennâtermodinamíčnihvlastivosteizamagníčenoíplazmi
AT ryzhkovsv zastosuvannâmodelítomasafermídlâviznačennâtermodinamíčnihvlastivosteizamagníčenoíplazmi
AT shumaevvv zastosuvannâmodelítomasafermídlâviznačennâtermodinamíčnihvlastivosteizamagníčenoíplazmi
first_indexed 2025-11-27T00:24:50Z
last_indexed 2025-11-27T00:24:50Z
_version_ 1850788294432915456
fulltext ISSN 1562-6016. ВАНТ. 2015. №1(95) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 97-99. 97 APPLICATION OF THOMAS-FERMI MODEL TO EVALUATION OF THERMODYNAMIC PROPERTIES OF MAGNETIZED PLASMA V.V. Kuzenov 1,2 , S.V. Ryzhkov 1 , V.V. Shumaev 1 1 Bauman Moscow State Technical University, Moscow, Russia; 2 A.Yu. Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia E-mail: chubchic@gmail.com The aim of this work is the evaluation of thermodynamic and transport properties of fusion plasmas in an externally applied strong magnetic field (10…10 3 T). For these purpose the Thomas-Fermi model for substances with a given temperature and density was used. The effect of such strong magnetic field on the transport properties of plasmas and the view of the inner shells of atoms and ions was analyzed. Isotherms of the pressure and the specific internal energy of the tungsten plasma are obtained. Quantum and exchange corrections to the pressure of this plasma have been taken into account. PACS: 52.25.Fi, 52.25.Kn, 52.25.Xz, 52.65.-y INTRODUCTION Thermodynamic and transport properties of fusion plasmas, consisting of the atomic mixture of substances, in an externally applied strong magnetic field (10…10 3 T) are important. Such plasma may be used as cylindrical [1] and spherical [2, 3] target for magnetized target fusion or magneto-inertial fusion [4-6]. Note that the degeneracy of the electron gas in such plasmas is possible [7]. Transport properties of the plasma are the coefficients of thermal and electrical conductivity. Thermodynamic properties are described by thermal and caloric equations of state: P = P(T, ρ), E = E(T, ρ), S = S(T, ρ), where P is the pressure of the plasma; E, S are its internal energy and entropy per unit mass. T and ρ are the temperature and the density of the plasma. The approximate method is used for the mathematical description of plasmas thermophysical properties. This method is based on the generalization of statistical Thomas-Fermi method to the case of zero temperature [7] and the external magnetic field [8]. This method is simple (for example, compared with the Hartree-Fock-Slater method), while it provides acceptable accuracy for practice, especially when the quantum oscillatory and exchange corrections are taken into account [9]. Currently, various software packages and databases for determining the thermophysical properties of substances have been developed: ASTEROID (IPMech RAS), SESAME (LANL, LLNL Livermore, and Sandia), TEFIS (KIAM RAS), IVTANTERMO (JIHT RAS), TERMOS (KIAM), program complexes «TUR» (RFNC-VNIITF) and EIP EOS (Ioffe Institute) and etc. The Thomas-Fermi (T-F) model with the quantum and exchange corrections is used in many of these databases as a theoretical model. However, some of these databases are for private use only or they are incomplete. Also in these databases (except the program complex EIP EOS [10]) T-F model is not extended to the case of the external magnetic field impact on thermonuclear plasma. 1. THE THOMAS-FERMI MODEL: DESCRIPTION AND APPLICATIONS The physical model of matter, which is the basis of the T-F model, assumes that the difference between "free" and "bound" electrons is absent and a substance is considered to be composed not of ions and electrons, but of nuclei and electrons. The interaction energy of the particles in matter is determined by the electrons. Calculations of fusion plasmas thermodynamic properties are based on the model of local thermodynamic equilibrium (LTE). Systems for a large number of noninteracting nuclei comply with Boltzmann statistics. The calculation of electronic parts of the energy and the pressure is based on the LTE model, according to which a substance is separated into the system of atomic cells; each contains Z electrons (e is the electron charge) and a nucleus of charge Z∙e. For simplicity, the shape of the atomic cell is taken to be spherical. Electrons in the atomic cell are considered as a gas in the slowly varying radially self-consistent electrostatic field V(r), generated by the nuclear charge and the charge of electrons. Thus, the nonideal electron gas is taken into account. The Fermi-Dirac statistics is applied to the electron-ion gas. Assume, that the T-F potential distribution φ(x) = x∙(V(r)+μ)/θ is known. Here θ is the kB∙T (kB is the Boltzmann constant); μ is the chemical potential of the plasma. Then the pressure of electrons Pe at the atomic cell boundary can be calculated as the average momentum carried by them per unit e per unit area through the atomic cell with the radius r0. It is necessary to take into account the pressure created by the nuclei to find the total pressure of the system of particles in the atomic cell. At high temperatures the system (gas, consisting of cores) is typically treated as an ideal gas. Therefore the total pressure P is defined as θ ν eP       , where v is the volume of the atomic cell. 98 ISSN 1562-6016. ВАНТ. 2015. №1(95) For details (e.g. for calculating the specific internal energy and the entropy of the plasma), refer to the [9, 11]. Quantum and exchange corrections are required to consider because the T-F model is the approximate method (for details, refer to the [12]). To find them we use the method, described here [9]. 2. ESTIMATIONS OF THE EXTERNAL MAGNETIC FIELD INFLUENCE ON THERMOPHYSICAL AND TRANSPORT PROPERTIES OF PLASMAS The degree of the magnetic field influence on plasma transport coefficients (the electrical conductivity, the thermal conductivity) depends on the ratio of the collision frequency of electrons ev to the cyclotron frequency 111,759 10 e e e B B m      of electrons [13], here, B is the magnetic induction in T, me is the mass of the electron. The magnetic field will have a noticeable effect on the transport properties of plasmas if 1e ev   . We obtain the condition of the strong magnetic field influence on the properties of plasmas: 16 3/2 2 10 10 e Zn B T     , where Z is the ion charge; Λ is the Coulomb logarithm; Те is the electron temperature in K; n is the plasma density in m -3 . For the tungsten plasma (Z = 74) with parameters of our interest Те ~ 10 7 K, n ~ 10 25 m -3 which corresponds to the plasma density ρ ~ 10 kg/m 3 – crown density of the target in the inertial confinement fusion) we have the following estimate (Λ ≈ 15) 7 TB  . In the magneto-inertial fusion it is experimentally obtained magnetic field Bfus ~ 10 3 T and it can be achieved even higher values [14-19]. Therefore it is required to consider the influence of strong magnetic fields on the transport properties of plasmas. The magnetic field affects the orientation of spins of electrons or atoms in the gas which has a temperature T defined by the condition or 1,49 B B k T B T    , where μ is the Bohr magneton. In our case, the characteristic temperature is Тchar ~ 10 7 K. Then 710 TB  , that is significantly more than values reached in the thermonuclear fusion. The magnetic field B ~ 10 5 T, in which the energy of the magnetic moment μB is larger than the characteristic energy of the atom or molecule (It has the order of the number Ry = mee 4 /2ћ 2 ) significantly affects the structure of atoms and molecules and strongly modifies their binding energy and ionization energy. Thus, we assume that the magnetic field does not affect the orientation of spins of electrons or atoms in a gas. Considered fields are also much smaller than the field В ~ 10 9 T, so we can neglect the relativistic effects. 3. RESULTS The boundary value problem, which determines the V(r) potential distribution, is solved by the sweeping method with iterations [9, 11]. The pressure P(T, ρ), the specific internal energy E(T, ρ) and the entropy S(T, ρ) of the tungsten plasma are shown on Fig. 1. Isotherms of the pressure P, the specific internal energy E and the entropy S depending on the density ρ for the tungsten plasma at different temperatures CONCLUSIONS Evaluations we made showed that the magnetic field up to 10 3 Т only affects the transport properties of the plasma, but does not change the view of the inner shells of atoms and ions. Isotherms of the pressure and the specific internal energy of the tungsten plasma at the temperature range Т = 10 7 …(2∙10 8 ) K and the density range ρ = 10…10 5 kg/m 3 are obtained. The maximum values of relative quantum and exchange corrections to the pressure of these plasmas are ~ 1% at 10 7 K and 10 5 kg/m 3 . This work was supported by the Ministry of Education and Science of the Russian Federation (Goszadanie № 13.79.2014/K). REFERENCES 1. S.V. Ryzhkov, A.V. Anikeev. Improved Regimes in High Pressure Magnetic Discharges // Proc. of the 14th International Heat Transfer Conference. 2010, IHTC14- 22212. ISSN 1562-6016. ВАНТ. 2015. №1(95) 99 2. S.V. Ryzhkov. A field-reversed magnetic configuration and applications of high-temperature FRC plasma // Plasma Physics Reports. 2011, v. 37, p. 1075- 1076. 3. A.Yu. Chirkov, S.V. Ryzhkov, P.A. Bagryansky, A.V. Anikeev. Plasma Kinetics Models for Fusion Systems Based on the Axially-Symmetric Mirror Devices // Fusion Science and Technology. 2011, v. 59, № 39, p. 39-42. 4. Y.C.F. Thio, E. Panarella, R.C. Kirkpatrick, et al. Magnetized target fusion in a spherical geometry with standoff drivers // Current Trends in International Fusion Research: Proceedings of the Second Symposium. 1999, p. 113-134. 5. A.Yu. Chirkov, S.V. Ryzhkov. The Plasma Jet/Laser Driven Compression of Compact Plasmoids to Fusion Conditions// Journal of Fusion Energy. 2012, v. 31, № 1, p. 7-12. 6. I.Yu. Kostyukov, S.V. Ryzhkov. Magneto-Inertial Fusion with Laser Compression of a Magnetized Spherical Target // Plasma Physics Reports. 2011, v. 37, № 13, p. 1092-1098. 7. Ya.B. Zel’dovich, Yu.P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: “Dover Publications”, 2002. 8. Y. Tomishima, K. Yonei. Thomas-Fermi Theory for Atoms in a Strong Magnetic Field // Progress of Theoretical Physics. 1978, v. 59, № 3, p. 683-696. 9. A.F. Nikiforov, V.G. Novikov, V.B. Uvarov. Quantum- Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State. Berlin: “Birkhauser Verlag”, 2005. 10. A.Y. Potekhin, G. Chabrier. Equation of state for magnetized Coulomb plasmas // Astron. Astrophys. 2013, v. 550, p. A43. 11. V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev. Thermodynamic properties of magnetized plasma evaluated by Thomas-Fermi model // Plasma Physics Reports. 2014. 12. D.A. Kirzhnits, Yu.E. Lozovik, G.V. Shpatakovskaya. Statistical Model of Matter // Soviet Physics Uspekhi. 1975, v. 18, p. 649-672. 13. M.A. Liberman, B. Johansson. Properties of Matter in Ultrahigh Magnetic Fields and the Structure of the Surface of Neutron Stars // Physics Uspekhi. 1995, v. 38, p. 117-136. 14. V.V. Kuzenov, S.V. Ryzhkov. Numerical Modeling of Magnetized Plasma Compressed by the Laser Beams and Plasma Jets // Problems of Atomic Science and Technology. Series „Plasma Physics”. 2013, № 1, p. 12-14. 15. S.V. Ryzhkov. Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma // Bulletin of the Russian Academy of Sciences. Physics. 2014, v. 78, № 5, p. 456-461. 16. S.V. Ryzhkov. Low radioactive and hybrid fusion – A path to clean energy // Sustainable Cities and Society. 2014. URL: http://dx.doi.org/10.1016/j.scs.2014.05.003 (Available online 21 May 2014). 17. V.V. Kuzenov, S.V. Ryzhkov. Evaluation of Hydrodynamic Instabilities in Inertial Confinement Fusion Target in a Magnetic Field // Problems of Atomic Science and Technology. 2013, № 4, p. 103-107. 18. V.V. Kuzenov, S.V. Ryzhkov. Regimes of Heating and Compression in Magneto-Inertial Fusion // Proc. of the 15th International Heat Transfer Conference. 2014. IHTC15-9662. 19. S.V. Ryzhkov. The behavior of a magnetized plasma under the action of laser with high pulse energy// Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2010, № 4, p. 105-110. Article received 15.11.2014 ПРИМЕНЕНИЕ МОДЕЛИ ТОМАСА-ФЕРМИ ДЛЯ ОПРЕДЕЛЕНИЯ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ЗАМАГНИЧЕННОЙ ПЛАЗМЫ В.В. Кузенов, С.В. Рыжков, В.В. Шумаев Определены термодинамические и транспортные свойства термоядерной плазмы, находящейся в сильном внешнем магнитном поле (10…1000 Тл). Для этой цели использовалась модель Томаса-Ферми для веществ с заданным температурой и плотностью. Проанализировано действие сильного магнитного поля на транспортные свойства плазмы и вид внутренних оболочек атомов и ионов. Построены изотермы давления, удельной внутренней энергии и энтропии плазмы вольфрама. Учтены квантовые и обменные поправки к давлению плазмы. ЗАСТОСУВАННЯ МОДЕЛІ ТОМАСА-ФЕРМІ ДЛЯ ВИЗНАЧЕННЯ ТЕРМОДИНАМІЧНИХ ВЛАСТИВОСТЕЙ ЗАМАГНІЧЕНОЇ ПЛАЗМИ В.В. Кузенoв, С.В. Рижков, В.В. Шумаєв Визначено термодинамічні і транспортні властивості термоядерної плазми, що знаходиться в сильному зовнішньому магнітному полі (10...1000 Тл). Для цієї мети використовувалася модель Томаса-Фермі для речовин із заданною температурою і щільністю. Проаналізовано дію сильного магнітного поля на транспортні властивості плазми і вид внутрішніх оболонок атомів і іонів. Побудовані ізотерми тиску, питомої внутрішньої енергії і ентропії плазми вольфраму. Враховані квантові і обмінні поправки до тиску плазми.