High-speed gas injector for powerful plasmadynamic systems
The paper describes the design features of gas injectors for the axial (parallel to the axis of the accelerator) and radial (perpendicular to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2015 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/82110 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | High-speed gas injector for powerful plasmadynamic systems / V.V. Staltsov, V.V. Chebotarev, V.A. Makhlaj // Вопросы атомной науки и техники. — 2015. — № 1. — С. 118-121. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82110 |
|---|---|
| record_format |
dspace |
| spelling |
Staltsov, V.V. Chebotarev, V.V. Makhlaj, V.A. 2015-05-25T09:35:18Z 2015-05-25T09:35:18Z 2015 High-speed gas injector for powerful plasmadynamic systems / V.V. Staltsov, V.V. Chebotarev, V.A. Makhlaj // Вопросы атомной науки и техники. — 2015. — № 1. — С. 118-121. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 47.80.-v, 51.35.+a, 52.30.-q, 52.50.Dg https://nasplib.isofts.kiev.ua/handle/123456789/82110 The paper describes the design features of gas injectors for the axial (parallel to the axis of the accelerator) and radial (perpendicular to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected working gas on the current value in the control coil was found. Описываются особенности конструкции газовых инжекторов для осевой (параллельной оси ускорителя) и радиальной (перпендикулярной оси ускорителя) подачи газа в ускорительный канал. Представлены результаты газодинамических исследований инжекторов. Исследована зависимость количества напускаемого рабочего газа в зависимости от давления газа под запирающим элементом клапана. Показана существенная зависимость количества инжектированного рабочего газа от величины тока в управляющей катушке. Описуються особливості конструкції газових інжекторів для вісьової (паралельної осі прискорювача) і радіальної (перпендикулярної осі прискорювача) подачі газу в прискорювальний канал. Представлені результати газодинамічних досліджень інжекторів. Досліджена залежність кількості робочого газу, що напускається, залежно від тиску газу під замикаючим елементом клапана. Показана істотна залежність кількості робочого газу, що напускається, від величини струму в котушці, що управляє. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Динамика плазмы и взаимодействие плазма-стенка High-speed gas injector for powerful plasmadynamic systems Бытродействующие газовые инжекторы для плазмодинамических систем большой мощности Швидкодіючі імпульсні інжектори робочої речовини для плазмодинамічних систем великої потужності Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
High-speed gas injector for powerful plasmadynamic systems |
| spellingShingle |
High-speed gas injector for powerful plasmadynamic systems Staltsov, V.V. Chebotarev, V.V. Makhlaj, V.A. Динамика плазмы и взаимодействие плазма-стенка |
| title_short |
High-speed gas injector for powerful plasmadynamic systems |
| title_full |
High-speed gas injector for powerful plasmadynamic systems |
| title_fullStr |
High-speed gas injector for powerful plasmadynamic systems |
| title_full_unstemmed |
High-speed gas injector for powerful plasmadynamic systems |
| title_sort |
high-speed gas injector for powerful plasmadynamic systems |
| author |
Staltsov, V.V. Chebotarev, V.V. Makhlaj, V.A. |
| author_facet |
Staltsov, V.V. Chebotarev, V.V. Makhlaj, V.A. |
| topic |
Динамика плазмы и взаимодействие плазма-стенка |
| topic_facet |
Динамика плазмы и взаимодействие плазма-стенка |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Бытродействующие газовые инжекторы для плазмодинамических систем большой мощности Швидкодіючі імпульсні інжектори робочої речовини для плазмодинамічних систем великої потужності |
| description |
The paper describes the design features of gas injectors for the axial (parallel to the axis of the accelerator) and radial (perpendicular to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected working gas on the current value in the control coil was found.
Описываются особенности конструкции газовых инжекторов для осевой (параллельной оси ускорителя) и радиальной (перпендикулярной оси ускорителя) подачи газа в ускорительный канал. Представлены результаты газодинамических исследований инжекторов. Исследована зависимость количества напускаемого рабочего газа в зависимости от давления газа под запирающим элементом клапана. Показана существенная зависимость количества инжектированного рабочего газа от величины тока в управляющей катушке.
Описуються особливості конструкції газових інжекторів для вісьової (паралельної осі прискорювача) і радіальної (перпендикулярної осі прискорювача) подачі газу в прискорювальний канал. Представлені результати газодинамічних досліджень інжекторів. Досліджена залежність кількості робочого газу, що напускається, залежно від тиску газу під замикаючим елементом клапана. Показана істотна залежність кількості робочого газу, що напускається, від величини струму в котушці, що управляє.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82110 |
| citation_txt |
High-speed gas injector for powerful plasmadynamic systems / V.V. Staltsov, V.V. Chebotarev, V.A. Makhlaj // Вопросы атомной науки и техники. — 2015. — № 1. — С. 118-121. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT staltsovvv highspeedgasinjectorforpowerfulplasmadynamicsystems AT chebotarevvv highspeedgasinjectorforpowerfulplasmadynamicsystems AT makhlajva highspeedgasinjectorforpowerfulplasmadynamicsystems AT staltsovvv bytrodeistvuûŝiegazovyeinžektorydlâplazmodinamičeskihsistembolʹšoimoŝnosti AT chebotarevvv bytrodeistvuûŝiegazovyeinžektorydlâplazmodinamičeskihsistembolʹšoimoŝnosti AT makhlajva bytrodeistvuûŝiegazovyeinžektorydlâplazmodinamičeskihsistembolʹšoimoŝnosti AT staltsovvv švidkodíûčíímpulʹsníínžektorirobočoírečovinidlâplazmodinamíčnihsistemvelikoípotužností AT chebotarevvv švidkodíûčíímpulʹsníínžektorirobočoírečovinidlâplazmodinamíčnihsistemvelikoípotužností AT makhlajva švidkodíûčíímpulʹsníínžektorirobočoírečovinidlâplazmodinamíčnihsistemvelikoípotužností |
| first_indexed |
2025-11-26T07:53:40Z |
| last_indexed |
2025-11-26T07:53:40Z |
| _version_ |
1850614837344731136 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №1(95)
118 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 118-121.
HIGH-SPEED GAS INJECTOR FOR POWERFUL PLASMADYNAMIC
SYSTEMS
V.V. Staltsov, V.V. Chebotarev, V.A. Makhlaj
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine
The paper describes the design features of gas injectors for the axial (parallel to the axis of the accelerator) and
radial (perpendicular to the axis of the accelerator) working gas supply into the accelerator channel. The results of
gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a
function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected
working gas on the current value in the control coil was found.
PACS: 47.80.-v, 51.35.+a, 52.30.-q, 52.50.Dg
INTRODUCTION
The studies of high-power plasma streams have
shown a substantial effect of the parameters of the
neutral gas injected into the accelerator channel on the
finite energy parameters of the plasma. For realizing a
regular plasma flow in the accelerator channel, it is
necessary to provide the assigned working gas pressure
gradient in the radial direction and along the length of
the accelerator channel, and also, to ensure the required
mass flow rate of the working substance during the
whole period of plasma existence. This is necessary
primarily to eliminate the crisis phenomena of the
discharge current [1, 2]. To meet these requirements,
various modifications of high-speed gas injectors with a
wide range of functional properties have been
developed [3].
THE AXIAL GAS FEED INJECTOR (AGFI)
For feeding the working substance to the discharge
space of the plasmodynamic system parallel to its axis, a
gas injector with axial gas feed (AGFI) has been
developed. The injector supplies the working substance
directly to the anode region of the accelerator channel in
order to feed it with missing current carriers. Besides,
this scheme of working substance delivery allows one to
stabilize the back edge of the ionization region by gas-
dynamic pressure. All these factors together make it
possible to stabilize the plasma stream, to reduce
substantially the potential jump, and to improve the
energy characteristics of the plasma.
Fig. 1 depicts the integrated working gas inlet (gas
volume under atmospheric pressure injected per pulse)
as a function of voltage supplied to the control coil
winding at initial pressures of the gas (4 and 8 atm) in
the booster cavity. The analysis of the curves shows that
the gas inlet for the AGFI is essentially dependent on
the voltage supplied to the control coil winding (hence,
on the current value in the coil winding), and also, on
the initial gas pressure in the booster cavity of the
injector. Thus, with an increase of the coil voltage from
2.2 up to 3 kV, the operating gas inlet increased from
1.5 up to 8 cm
3
·atm per pulse at an initial gas pressure
of 4 atm in the booster cavity. For an initial gas pressure
of 8 atm the gas inlet at the same voltage values has
increased from 2.5 up to 33 cm
3
·atm. Here, it should be
noted that a two-fold increase of the initial gas pressure
in the booster cavity leads to an increase in the gas inlet
by factors of 4 to 5.
2,0 2,2 2,4 2,6 2,8 3,0 3,2
0
10
20
30
40
V
,
c
m
3
U, kV
р=4 атм.
р=8 атм.
Fig. 1. Integrated working gas inlet versus winding lead
voltage of the AGFI control coil
Fig. 2 illustrates the maximum gas flow pressure
versus initial gas pressure in the booster cavity of the
AGFI. The gas flow pressure was measured at 1 and
5 cm from the nozzle exit section. It is shown that at
1 cm from the nozzle section the gas pressure increase
in the booster cavity from 2 atm up to 6 atm leads to the
increase in the maximum gas flow pressure from 9 up to
42 Torr. It should be noted that with a distance away
from the nozzle section a thermal expansion of the gas
flow takes place, and the flow pressure sharply
decreases. Thus, with the distance from the nozzle
section increasing from 1 cm up to 5 cm, the maximum
gas flow pressure decreases by factors of 4 to 5, all
other conditions being the same. This should be taken
into account when forming the required working gas
pressure gradient along the length of the accelerating
channel. It should be also noted that the variation in
both the control coil winding voltage (current intensity)
and the initial working gas pressure in the booster cavity
of the injector provides an efficient control of the gas
flow parameters.
THE RADIAL GAS FEED INJECTOR (RGFI)
For feeding the working substance to the discharge
space of the plasmodynamic system perpendicularly to
its axis, a gas injector with radial gas feed (RGFI) has
been developed. The injector supplies the working gas
directly to the ionization zone, enabling the formation of
the required gas pressure gradient along the radius of
the accelerating channel.
ISSN 1562-6016. ВАНТ. 2015. №1(95) 119
1 2 3 4 5 6 7
0
10
20
30
40
50
p
,
T
o
r
r
P, atm
1 cm
5 cm
Fig. 2. Maximum gas flow pressure versus initial gas
pressure in the booster cavity of the injector AGFI
The special design feature of the RGFI is that its
locking cup is fully discharged of the gas pressure. The
working gas supply by the injector RGFI directly to the
near-electrode zone of the accelerator in order to feed it
with missing current carriers, enables one to reduce
substantially the potential jump and to improve the
energy characteristics of the plasma.
Gas-dynamic studies of the RGFI injector were
made. Fig. 3 gives the integrated working gas inlet as a
function of voltage supplied to the control coil winding
at initial pressures of the gas (4 and 8 atm) in the
booster cavity. It is shown that the gas inlet for the
RGFI injector is essentially dependent on the voltage
supplied to the control coil winding (hence, on the
current value in the coil winding), and also, on the
initial gas pressure in the booster cavity of the injector.
Thus, at an initial gas pressure of 4 atm in the booster
cavity, with an increase of the coil voltage from 1.8 up
to 2.4 kV, the operating gas inlet increased from 2 up to
42 cm
3
·atm per pulse. For an initial gas pressure of 8
atm the gas inlet at voltage values ranging from 1.8 to
2.4 kV has increased from 2.5 up to 116 cm
3
·atm. Here,
it should be noted that a two-fold increase of the initial
gas pressure in the booster cavity leads to an increase in
the gas inlet by factors of 2 to 3, the winding currents of
the control coil being equal.
The maximum gas flow pressure versus initial gas
pressure in the booster cavity of the RGFI is given in
Fig. 4. The gas flow pressure was measured at 1 cm
from the inlet hole. It is shown that at a distance of 1 cm
from the hole the gas pressure increase in the booster
cavity from 2 up to 12 atm. leads to the increase in the
maximum gas flow pressure from 215 up to 1350 Torr.
From the analysis of the experimental data it follows
that the design features of the RGFI provide an efficient
wide-range control of the gas flow parameters. The
locking cup of the injector, freed from pressure, permits
operation at high initial gas pressures in the booster
cavity. This provides a means of forming the gas pulse
with a steep leading edge and a high gas flow pressure,
that being of importance for generation of plasma
streams with high energy parameters. It should be noted
that in powerful plasmodynamic systems it is most
reasonable to use the gas injectors IAF and IRF in
combination. It is the combined action of the two
injectors that makes it possible to form the gas pulse
with specified parameters along both the radius and the
length of the acceleration channel. Moreover, in the
plasma acceleration process, the combined action of the
injectors permits an efficient current-carrier feeding to
the zones, which show the carrier deficiency.
1,6 2,0 2,4 2,8 3,2
0
40
80
120
160
200
V
,
c
m
3
x
a
tm
U, kV
4 atm.
8 atm.
Fig. 3. Integrated working gas inlet by the RGFI
injector versus winding voltage of the control coil at
initial gas pressures of 4 and 8 atm in the booster cavity
0 2 4 6 8 10 12 14
0
400
800
1200
1600
p
,
T
o
r
r
P, atm
Fig. 4. Maximum gas flow pressure versus initial gas
pressure in the booster cavity of the injector RGFI
THE HIGH-PRESSURE GAS INJECTOR
HPGI
In order to ensure a high mass rate of working gas
flow in the accelerator channel in combination with a
high gas flow pressure, a high-pressure gas injector
(HPGI) has been developed. The control magnetic coil
in this injector is located in the booster gas cavity, and it
acts directly on the locking element not involving
intermediate pieces. This holds significance for
enhancing the operation speed of the injector. The
locking element of the injector is free of working gas
pressure, i.e., with variation of the gas pressure in the
booster gas cavity the clamping pressure of the locking
element on the seals remains unchanged.
120 ISSN 1562-6016. ВАНТ. 2015. №1(95)
0,8 1,2 1,6 2,0 2,4
0
100
200
300
400
V
,
c
m
3
U, kV
P=1 atm
P=2 atm
P=3 atm
Fig. 5. Integrated working gas inlet by the HPGI versus
control-coil winding voltage at initial booster-cavity gas
pressures of 1, 2 and 3 atm
This enables one to change the inlet gas flow
parameters by varying the gas pressure in the gas cavity
without changing the parameters of the drive current of
the coil. The factor of relieving the moving elements
from gas-pressure-induced forces also has its positive
effect on the operation speed of the system and the
service life of the magnetic coil, considering that with
increasing gas pressure this factor permits opening of
inlet channels at the same high rate without increasing
the current intensity in the coil winding. The same
factor permits an essential range extension of initial
operating gas pressures in the booster cavity, at which
the injector shows a stable and reliable operation.
Gas-dynamic tests of the HPGI have been made.
Figure 5 shows the integrated working gas inlet versus
voltage applied to the control-coil winding at initial
booster-cavity gas pressures of 1, 2 and 3 atm. It is seen
that the gas inlet for the HPGI is essentially dependent
on both the voltage applied to the control-coil winding
(hence, on the current value in the coil winding) and the
initial gas pressure in the booster cavity of the injector.
Thus, at the initial booster-cavity gas pressure of 1 atm,
with the coil voltage increase from 1.0 up to 2.0 kV the
working gas inlet increased from 4 up to 53 cm
3
·atm.
per pulse. At initial gas pressure of 3 atm., the gas inlet
at the same voltage values increased from 53 up to
330 cm
3
·atm. Here it should be noted that a 3-fold
increase of the initial gas pressure in the booster cavity
leads to the increase in the gas inlet by factors of 5 to 6.
Fig. 6 gives the maximum gas flow pressure as a
function of the control-coil winding current for initial
gas pressures of 1, 2 and 3 atm. in the HPGI booster
cavity. The gas flow pressure was measured at a
distance of 20 cm from the inlet channels. It is obvious
that in this section the current increase in the coil
winding from 2.9 to 5.9 kA leads to the increase in the
maximum gas flow pressure from 280 to 640 Torr for
initial gas pressures of 2 and 3 atm. It should be noted
that the increase in the initial gas pressure from 1 to
3 atm. at low currents in the control coil winding brings
no essential change in the maximum gas flow pressure.
2 3 4 5 6
200
400
600
800
p
,
T
o
r
r
I, kA
P=1 atm
P=2 atm
P=3 atm
Fig. 6. Maximum gas flow pressure versus control-coil
winding current for initial pressures of 1, 2 and 3 atm.
in the HPGI booster cavity
However, with the increase in current up to 5.9 kA, the
maximum gas flow pressure increases from 640 to
790 Torr, i.e., by more than 20%.
It should be also noted that variously designed inlet
channels of the injector provide for varying (axial,
radial or combined) inlet of the working substance.
CONCLUSIONS
The developed gas injectors make it possible to form
the gas pulse with required gas-dynamic parameters at
the input of the accelerator channel and along its length
by varying the working gas inlet and the gas-flow
pressure gradient radially and along the length of the
accelerator channel.
The experiments have shown an essential
dependence of the integrated working gas inlet and the
gas flow pressure on the voltage (current) value of the
control electromagnet coil winding and on the initial gas
pressure value in the booster cavity of the injector. The
injectors provide a metered integrated inlet of the
working gas ranging from 1 to 158 cm
3
·atm. per pulse.
The maximum gas flow pressure varies from 3 to
1350 Torr. A wide range of gas flow parameters permits
the efficient variation in the energy parameters of
plasma.
In high-power plasmodynamic systems, a combined
use of the IAF, IRF, HPGI gas injectors appears most
reasonable. It is just their combined action that makes it
possible to form the gas pulse with assigned parameters
both in the radial direction, and along the length of the
accelerator channel. And in the process of plasma
acceleration, the joint action of the injectors provides
the plasma stream stabilization and an efficient feed of
current carriers to the zone, which shows their
deficiency.
The obtained results are important for high energy
density plasmadynamics. Plasma streams with
optimized parameters are going be used in technological
applications for surface modification [4-7] and in
further studies of plasma-surface interactions simulating
fusion reactor conditions [8-12].
ISSN 1562-6016. ВАНТ. 2015. №1(95) 121
REFERENCES
1. A.I. Morozov Principles of coaxial (quasi)stationary
plasma accelerators // Fizika plasmy. 1990, v. 16, № 2,
p. 131-146 (in Russian).
2. A.I. Morozov et al. //Plasma Devices and Operations.
1992, v. 2, № 2, 155.
3. V.V. Staltsov, V.V. Chebotarev, et al. Pulse
electrodynamic valve: Ukrainian invention patent. 2014,
p. 104818 - p. 4.
4. V.I. Tereshin et al. // Vacuum. 2004, v. 73(3-4),
p. 555-560 (in Russian).
5. V.I. Tereshin et al. // Rev. Sci. Instr. 2002, v. 53(2),
p. 831
6. I.E. Garkusha et al. // Vacuum. 2000, v. 58 (2),
p. 195-201 (in Russian).
7. J. Langner et al. // Surf. Coat. Techn. 2000, v. 128-
129, p. 105-111.
8. V.V. Chebotarev et al. // Journal of Nuclear
Materials. 1996, v. 233-237, p. 736-740.
9. I.E. Garkusha et al. // Journal of Nuclear Materials.
2011, v. 415 (1), p. S65-S69.
10. I.E. Garkusha et al. // Phys. Scr. 2009, v. T138,
p. 14054.
11. I.S. Landman et al. // Phys. Scr. 2004, v. T111,
p. 206-212.
12. V.I. Tereshin et al. // Brazilian Jour. of Phys. 2002,
v. 32 (1), p. 165-171.
Article received 26.01.2015
БЫТРОДЕЙСТВУЮЩИЕ ГАЗОВЫЕ ИНЖЕКТОРЫ ДЛЯ ПЛАЗМОДИНАМИЧЕСКИХ СИСТЕМ
БОЛЬШОЙ МОЩНОСТИ
В.В. Стальцов, В.В. Чеботарёв, В.А. Махлай
Описываются особенности конструкции газовых инжекторов для осевой (параллельной оси ускорителя) и
радиальной (перпендикулярной оси ускорителя) подачи газа в ускорительный канал. Представлены
результаты газодинамических исследований инжекторов. Исследована зависимость количества
напускаемого рабочего газа в зависимости от давления газа под запирающим элементом клапана. Показана
существенная зависимость количества инжектированного рабочего газа от величины тока в управляющей
катушке.
ШВИДКОДІЮЧІ ІМПУЛЬСНІ ІНЖЕКТОРИ РОБОЧОЇ РЕЧОВИНИ ДЛЯ ПЛАЗМОДИНАМІЧНИХ
СИСТЕМ ВЕЛИКОЇ ПОТУЖНОСТІ
В.В. Стальцов, В.В. Чеботарьов, В.O. Махлай
Описуються особливості конструкції газових інжекторів для вісьової (паралельної осі прискорювача) і
радіальної (перпендикулярної осі прискорювача) подачі газу в прискорювальний канал. Представлені
результати газодинамічних досліджень інжекторів. Досліджена залежність кількості робочого газу, що
напускається, залежно від тиску газу під замикаючим елементом клапана. Показана істотна залежність
кількості робочого газу, що напускається, від величини струму в котушці, що управляє.
|