Isospin and energy position of isovector giant multipole resonances

The energy position Em of the dipole and quadrupole giant resonances versus the nuclear isospin T₀ is discussed. It is shown, that the proposed line E =a+bT₀ is in the better agreement with the experimental data of the dipole giant resonance, then in the case of Goldhaber-Teller and Steinwedel-Jense...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2000
Main Author: Khvastunov, V.M.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2000
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/82159
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Isospin and energy position of isovector giant multipole resonances / V.M. Khvastunov // Вопросы атомной науки и техники. — 2000. — № 2. — С. 22-23. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-82159
record_format dspace
spelling Khvastunov, V.M.
2015-05-26T08:08:14Z
2015-05-26T08:08:14Z
2000
Isospin and energy position of isovector giant multipole resonances / V.M. Khvastunov // Вопросы атомной науки и техники. — 2000. — № 2. — С. 22-23. — Бібліогр.: 4 назв. — англ.
1562-6016
PACS: 24.30.Ca
https://nasplib.isofts.kiev.ua/handle/123456789/82159
The energy position Em of the dipole and quadrupole giant resonances versus the nuclear isospin T₀ is discussed. It is shown, that the proposed line E =a+bT₀ is in the better agreement with the experimental data of the dipole giant resonance, then in the case of Goldhaber-Teller and Steinwedel-Jensen models.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Nuclear reactions
Isospin and energy position of isovector giant multipole resonances
Изоспин и энергетическое положение изовекторных гигантских мультипольных резонансов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Isospin and energy position of isovector giant multipole resonances
spellingShingle Isospin and energy position of isovector giant multipole resonances
Khvastunov, V.M.
Nuclear reactions
title_short Isospin and energy position of isovector giant multipole resonances
title_full Isospin and energy position of isovector giant multipole resonances
title_fullStr Isospin and energy position of isovector giant multipole resonances
title_full_unstemmed Isospin and energy position of isovector giant multipole resonances
title_sort isospin and energy position of isovector giant multipole resonances
author Khvastunov, V.M.
author_facet Khvastunov, V.M.
topic Nuclear reactions
topic_facet Nuclear reactions
publishDate 2000
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Изоспин и энергетическое положение изовекторных гигантских мультипольных резонансов
description The energy position Em of the dipole and quadrupole giant resonances versus the nuclear isospin T₀ is discussed. It is shown, that the proposed line E =a+bT₀ is in the better agreement with the experimental data of the dipole giant resonance, then in the case of Goldhaber-Teller and Steinwedel-Jensen models.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/82159
citation_txt Isospin and energy position of isovector giant multipole resonances / V.M. Khvastunov // Вопросы атомной науки и техники. — 2000. — № 2. — С. 22-23. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT khvastunovvm isospinandenergypositionofisovectorgiantmultipoleresonances
AT khvastunovvm izospiniénergetičeskoepoloženieizovektornyhgigantskihmulʹtipolʹnyhrezonansov
first_indexed 2025-11-25T17:45:48Z
last_indexed 2025-11-25T17:45:48Z
_version_ 1850519082377412608
fulltext ISOSPIN AND ENERGY POSITION OF ISOVECTOR GIANT MULTIPOLE RESONANCES V.M. Khvastunov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine The energy position Em of the dipole and quadrupole giant resonances versus the nuclear isospin T0 is discussed. It is shown, that the proposed line E =a+bT0 is in the better agreement with the experimental data of the dipole giant resonance, then in the case of Goldhaber-Teller and Steinwedel-Jensen models. PACS: 24.30.Ca Studies of giant resonances in nuclei have shown that isoscalar (IS) and isovector (IV) resonances with an identical multipolarity differ considerably in the energy position. For the quadruple giant resonance the IV resonance is located two times higher in energy than the IS resonance. Such a substantial change in the energy position is caused by the unit increment only of the state isospin in the nucleus. Presently the isovector dipole ((IVD), isoscalar quadruple (ISQ) and isovector quadruple (IVQ) giant resonances are studied most completely. The isospin splitting observed for the IVD resonance also affects the energy position. 80 100 120 140 160 180 200 13 14 15 16 17 A SJ GTEm , M eV Fig. 1. The excitation energy values Em of the isovector dipole giant resonance versus nuclear mass A. The curves are plotted for the Goldhaber - Teller and Steinwedel - Jensen models. The fitting parameters are indicated in the table. For the IVD resonance the energy position is described by the expressions Em J=K1 JA-1/6 (1) (Goldha- ber−Teller model [1]) or Em J=K2 JA-1/3 (2) (Steinwedel - Jensen model [2]), where Em J is the energy position of the resonance with the spin J, K1 J and K2 J are the fitting parameters, A is the nuclear mass. Both these expressions are obtained from the various versions of the hydrodynamic model. The G-T model regards a nucleus as the rigid neutron and proton spheres, which oscillate relative one another keeping their volumes unchangeable. The S-J model regards a nucleus as the neutron and proton liquids oscillating relative one another within the limits of a rigid sphere. Both these models show that on increasing the mass A of the nucleus the energy Em decreases. Figure 1 shows the Em values determined through fitting Lorentz curves to the measured photoneutron cross sections [3]. The accuracy of determining Em is ≤ 50 keV. The expressions (1) and (2) were fitted to these data according to the method of least squares. The fitting parameters obtained are given in the Table and the curves are shown in Fig. 1. It is seen from the figure that both models describe the energy position of the giant dipole resonance for mean nuclear weight only qualitatively and they differ strongly from the values for heavy nuclei. 5 10 15 20 13 14 15 16 17 T0 E m , M eV Fig. 2. The excitation energy values Em of the isovector dipole giant resonance versus the nuclear isospin T0. .The curve is plotted for the expression (3) fitted to experimental data. The energy position of the giant resonance changes with 22 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2000, № 2. Серия: Ядерно-физические исследования (36), c. 22-23. . changing the nuclear isospin T0. It decreases with T0 increasing. In expressions (1) and (2) the isospin is neglected. To take into account the effect of the nuclear isospin on the IVD resonance energy position, the measured data from the (γ,n) reaction [1] were arranged in dependence on T0. It was found that this dependence is well described by the straight line Em=a+bT0 (3) with the fitting parameters a and b, given in the table and in Fig. 2. The values of the χ2 quantities characterizing the quality of fitting to measured data show (cf. Figs. 1, 2 and the Table) that the straight line (3) furnishes a substantially better description of data and thus it may be used for estimating the energy position of the IVD resonance in nuclei with the better accuracy than that of formulas (1) and (2). Formula Parameter values (MeV) χ2 1 K1=34,40 ± 0,02 1341 2 K2=76,27 ± 0,04 3047 3 a=17,32±0,02; b=-0,183±0,002 877 50 100 150 200 250 20 22 24 26 28 30 32 34 A E m , M eV Fig. 3. The excitation energy values Em of the isovector quadrupole giant resonance versus the nuclear mass A. The curve is plotted for the expression (2) fitted to experimental data. For the IVQ resonace there are obtained much less data than for the IVD one. Figures 3 and 4 show the available data [4], arranged against A and T0 ,to which the expressions (2) and (3) are fitted. Both expressions describe the measured data sufficiently well and may be used for estimating the IVQ resonance in other nuclei. 0 5 10 15 20 25 20 22 24 26 28 30 32 T0 E m , M eV Fig. 4. The excitation energy values Em of the isovector quadrupole giant resonance versus the nuclear isospin T0 . The curve is plotted for the expression (3) fitted to experimental data. The results obtained show that the energy position of IV giant resonances is in stronger dependence on the isospin T0=(N-Z)/2 (the latter is determined by the difference between the number of neutrons N and protons Z in the nucleus), as compared with the surface tension (G-T model) or the density (S-J model). REFERENCIES 1. M. Goldhaber, E. Teller. On nuclear dipole vibrations // Phys. Rev. 1948, v. 74, p. 1046-1049. 2. H. Steinwedel, J. H. D. Jensen. Hydrodinamik von Kerndipol Schwingangen // Z. Naturforsch. 1950, v. A5, p. 413-420. 3. B.L. Berman, B. F. Gibson, J. S. O’Connell. Isospin shift of the energy of the giant resonance // Phys.Lett. 1977, v. 66 B, p. 405-409. 4. F.E. Bertrand. Giant multipole resonances - perspectives after ten years // Nucl. Phys. 1981, v. A 354, p. 129c-156c. 23