Charging of macroparticles in a high-voltage vacuum arc sheath

Charging of macroparticles (MPs) in front of the negatively biased surface emitted the secondary electrons due to bombardment by multiply charged ions (MCIs) has been investigated. It was found that MPs can be either reflected or attracted to the substrate depending on the substrate bias. Исследуетс...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2015
Hauptverfasser: Bizyukov, A.A., Girka, I.A., Romashchenko, E.V., Chibisov, A.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/82250
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Charging of macroparticles in a high-voltage vacuum arc sheath / A.A. Bizyukov, I.A. Girka, E.V. Romashchenko, A.D. Chibisov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 246-248. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-82250
record_format dspace
spelling Bizyukov, A.A.
Girka, I.A.
Romashchenko, E.V.
Chibisov, A.D.
2015-05-27T10:11:37Z
2015-05-27T10:11:37Z
2015
Charging of macroparticles in a high-voltage vacuum arc sheath / A.A. Bizyukov, I.A. Girka, E.V. Romashchenko, A.D. Chibisov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 246-248. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 52.40.Hf
https://nasplib.isofts.kiev.ua/handle/123456789/82250
Charging of macroparticles (MPs) in front of the negatively biased surface emitted the secondary electrons due to bombardment by multiply charged ions (MCIs) has been investigated. It was found that MPs can be either reflected or attracted to the substrate depending on the substrate bias.
Исследуется зарядка макрочастиц (MЧ) напротив отрицательно заряженной поверхности, испускающей вторичные электроны из-за бомбардировки многозарядными ионами (MЗИ). Было найдено, что MЧ могут либо притягиваться к подложке, либо отталкиваться в зависимости от потенциала подложки.
Досліджено зарядження макрочастинок (МЧ) напроти від’ємно зарядженої поверхні, яка випромінює вторинні електрони завдяки бомбардуванню багатократно зарядженими іонами (БЗІ). Було знайдено, що МЧ можуть або притягатися до підкладки, або відштовхуватися в залежності від потенціалу підкладки.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Низкотемпературная плазма и плазменные технологии
Charging of macroparticles in a high-voltage vacuum arc sheath
Зарядка макрочастиц в слое вакуумной дуги высокого напряжения
Зарядження макрочастинок у шарі вакуумної дуги високої напруги
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Charging of macroparticles in a high-voltage vacuum arc sheath
spellingShingle Charging of macroparticles in a high-voltage vacuum arc sheath
Bizyukov, A.A.
Girka, I.A.
Romashchenko, E.V.
Chibisov, A.D.
Низкотемпературная плазма и плазменные технологии
title_short Charging of macroparticles in a high-voltage vacuum arc sheath
title_full Charging of macroparticles in a high-voltage vacuum arc sheath
title_fullStr Charging of macroparticles in a high-voltage vacuum arc sheath
title_full_unstemmed Charging of macroparticles in a high-voltage vacuum arc sheath
title_sort charging of macroparticles in a high-voltage vacuum arc sheath
author Bizyukov, A.A.
Girka, I.A.
Romashchenko, E.V.
Chibisov, A.D.
author_facet Bizyukov, A.A.
Girka, I.A.
Romashchenko, E.V.
Chibisov, A.D.
topic Низкотемпературная плазма и плазменные технологии
topic_facet Низкотемпературная плазма и плазменные технологии
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Зарядка макрочастиц в слое вакуумной дуги высокого напряжения
Зарядження макрочастинок у шарі вакуумної дуги високої напруги
description Charging of macroparticles (MPs) in front of the negatively biased surface emitted the secondary electrons due to bombardment by multiply charged ions (MCIs) has been investigated. It was found that MPs can be either reflected or attracted to the substrate depending on the substrate bias. Исследуется зарядка макрочастиц (MЧ) напротив отрицательно заряженной поверхности, испускающей вторичные электроны из-за бомбардировки многозарядными ионами (MЗИ). Было найдено, что MЧ могут либо притягиваться к подложке, либо отталкиваться в зависимости от потенциала подложки. Досліджено зарядження макрочастинок (МЧ) напроти від’ємно зарядженої поверхні, яка випромінює вторинні електрони завдяки бомбардуванню багатократно зарядженими іонами (БЗІ). Було знайдено, що МЧ можуть або притягатися до підкладки, або відштовхуватися в залежності від потенціалу підкладки.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/82250
citation_txt Charging of macroparticles in a high-voltage vacuum arc sheath / A.A. Bizyukov, I.A. Girka, E.V. Romashchenko, A.D. Chibisov // Вопросы атомной науки и техники. — 2015. — № 1. — С. 246-248. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT bizyukovaa chargingofmacroparticlesinahighvoltagevacuumarcsheath
AT girkaia chargingofmacroparticlesinahighvoltagevacuumarcsheath
AT romashchenkoev chargingofmacroparticlesinahighvoltagevacuumarcsheath
AT chibisovad chargingofmacroparticlesinahighvoltagevacuumarcsheath
AT bizyukovaa zarâdkamakročasticvsloevakuumnoidugivysokogonaprâženiâ
AT girkaia zarâdkamakročasticvsloevakuumnoidugivysokogonaprâženiâ
AT romashchenkoev zarâdkamakročasticvsloevakuumnoidugivysokogonaprâženiâ
AT chibisovad zarâdkamakročasticvsloevakuumnoidugivysokogonaprâženiâ
AT bizyukovaa zarâdžennâmakročastinokušarívakuumnoídugivisokoínaprugi
AT girkaia zarâdžennâmakročastinokušarívakuumnoídugivisokoínaprugi
AT romashchenkoev zarâdžennâmakročastinokušarívakuumnoídugivisokoínaprugi
AT chibisovad zarâdžennâmakročastinokušarívakuumnoídugivisokoínaprugi
first_indexed 2025-11-26T14:05:26Z
last_indexed 2025-11-26T14:05:26Z
_version_ 1850624321667465216
fulltext ISSN 1562-6016. ВАНТ. 2015. №1(95) 246 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 246-248. CHARGING OF MACROPARTICLES IN A HIGH-VOLTAGE VACUUM ARC SHEATH A.A. Bizyukov, I.A. Girka, E.V. Romashchenko, A.D. Chibisov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: romaschenko@bk.ru Charging of macroparticles (MPs) in front of the negatively biased surface emitted the secondary electrons due to bombardment by multiply charged ions (MCIs) has been investigated. It was found that MPs can be either reflected or attracted to the substrate depending on the substrate bias. PACS: 52.40.Hf INTRODUCTION A vacuum arc discharge emits a plasma as well as macroparticles (MPs) in the form of molten droplets of cathode material [1]. The significant MP fraction sub- stantially limits the possibilities of vacuum arc plasma in coating technologies. The MPs occur in the range of size from several microns to a few hundred microns, the velocity of MPs reaches maximum value of 700- 800m/s. Cathodic vacuum arc plasma are known to con- tain multiply charged ions. These ions have kinetic energies of a few tens of eV. The mean ion charge state Z is generally higher than 1 for most materials. In many vacuum arc experiments, ions are collected at a negatively biased metal surface. The purpose of the present study is to investigate the behavior of charged MPs in front of the negatively biased surface emitted the secondary electrons due to bombardment by multip- ly charged ions (MCIs). 1. SHEATH MODEL Let us consider a high-voltage substrate is immersed in a vacuum arc produced plasma. For a high-voltage sheath, the current to the substrate is almost all ion cur- rent [2]. The MPs are assumed to have no effect on the sheath structure. In our coordinate system a plasma- sheath interface (interface between quasi-neutral and nonneutral regions) is taken to be the origin, 0x , and the positive direction is away from the it. The substrate, which is supposed to be at the constant potential bV , is located at dxx  ( eb TeV  eVb>>Te, where eT is the electron temperature in energy units, e is the ele- mentary charge). The ion temperature is assumed neg- ligible in comparison with eT . The generalized Bohm’s criterion is over satisfied for vacuum arc plasmas [3]. The ions, hitting the substrate surface with kinetic energies below 300 eV, may cause a potential electron emission [4]. Such ion energies are typical for deposi- tion a thin metallic film coating. The total ion beam current density is the sum of each ion species k , 11    N k ikikk N k iki unZejj (1) where kZ is the charge state, ikn is the ion density of the k-th species, iku is the velocity of each species. The density fraction of the k-th species 0nnf ikk  , where 0n is the bulk plasma density. A secondary electron beam produced at the substrate by the secondary emission is ejected from that place dxx  towards the plasma in the x direction [4]. , 12    N k ik k k N k eke j Z jj  (2) where ikj is the current density of secondary electrons produced by the ions of the k-th species, k k is the secondary ion-electron emission yield [4]. The potential variation  in the sheath is found by solving Poisson’s equation 0 21 2 2               N i ek N k ikk nnZe dx d , (3) where ekn is the secondary electron density; o is the permittivity constant. The boundary conditions are 0)0(;0)0(   . The flux of ions is assumed to be continuous across the sheath in the collisionless model. From the equa- tions of continuity and energy conservation for the ions we derive the ion density   eZ m eZ j n kk i k ik ik   02 , (4) where im is the ion mass, ko is the initial ion energy of the k-th species. On the analogy we obtain the secondary electron density ekn produced by the secondary emission    b eek ek Ve m e j n 2 , (5) where em is the electron mass. Substituting in Eq. (3) the densities (4) and (5), we obtain the sheath equation for numerical integration. 2. MP CHARGING We consider the MP with radius a as a spherical probe immersed in the plasma sheath [5]. The MP ra- dius is much smaller than the electron Debye radius mailto:romaschenko@bk.ru ISSN 1562-6016. ВАНТ. 2015. №1(95) 247 D . We assume instantaneous transfer of charge onto and off the MP at any MP position in the sheath. The steady-state potential to which a MP is charged is de- termined from the balance of particle fluxes to the grain   2 1 1 1 , N N k ek ik k k k j j Z               (6) where  is the secondary electron-electron emission coefficient [6]. The ions and electrons can be described as beam- like due to their high directed velocities. The expres- sions for the ion and electron fluxes are ,kkkkk unqj   (7) where ie, represents the electrons and ions, re- spectively; the collection cross section for charging col- lisions between the macroparticle with the particle  based on the orbital motion limited (OML) approach is             2 2 )( )()(2 1 xum xxq a s      , (8) where )(xs is the potential at the MP surface. If   1 )( )()(2 2   xum xxq s    , 0 . (9) Solving for )(x Eq. (3) and for )(xs Eq. (6), we obtain MP charge    )()(14)( 0 xxaxQ sD   .)()(4 0 xxs   (10) The MP travels through the plasma sheath and is subject to electric force [7]   )()( )1(3 1 2 xExQ a a EQF D D               , (11) where )(xE  is the electric field in the sheath. The potential energy of given size at the local sheath position is xdxExQzU x   0 )()()(  . (12) The profile of potential energy and initial kinetic energy of MP define the trapping of MP. For numerical solutions it is convenient to introduce the new variables   21 0 2 0 eD Tenxxz   , eTez  )( , ess Tez  )( , )()()( zzz sd  . (13) Copper is the most commonly used cathode material in vacuum arc experiments and consequently the calcu- lations were carried out for copper ions, bombarding a copper substrate [1, 4]. Here, we present the results of numerical calculations of the dynamics of charging of a Cu-macroparticle of radius a=1 m in the sheath with account of secondary electron emission due to ion and electron bombardment for the values of the parameters presented in Table. The electron temperature is usually not more than 1…2 eV. Thus, we gave 1eT eV. Fig. 1. The local sheath potential )(z (z)(solid line), the potential at the MP surface )(zs (dotted line), the MP potential with respect to the local plasma potential )(zd (dashed line) as a function of dis- tance z for a substrate bias: Vb = -90 V(а); Vb = -140 V(b) Energies and secondary electron emission coefficients for the different fractions of Cu-ions: Ref [1, 4] Ion charge Z Ion state fraction, kf Ion ene- rgy, 0k (eV) Secondary electron emission coefficient, k 1 0.30 37  2 0.55 56 0.21 3 0.15 66 0.69 The results of the numerical solution of Eqs. (3) and (6) are shown in Fig.1. This plot demonstrates the di- mensionless local sheath potential, the potential at the MP surface, the dust potential with respect to the local plasma potential as a function of normalized distance Dxz  . In first case, substrate bias Vb = -90 V (Fig.1,a), the potential at the MP surface )(zs is neg- ative, and the MP potential with respect to the local plasma potential )(zd is negative too. For a substrate bias Vb = -140 V (Fig. 1,b), the dust potential at the MP surface )(zs is negative. Howev- er, the MP potential with respect to the local plasma potential )(zd is positive near the substrate because the sheath potential becomes more negative than the MP potential. In Fig. 2,a, the MP charge profile for a sub- strate bias Vb = -90 V is shown. The MP charge is nega- tive. The MP charge determines the electric force. Therefore, the electric force will be negative too (see Fig. 2,b). The dependence of the potential energy of MP on the position Dxz  is shown in Fig. 2,c. a b 248 ISSN 1562-6016. ВАНТ. 2015. №1(95) Fig. 2. The dependence of the MP charge on the posi- tion Dxz  for a substrate bias Vb = -90 V (a); The dependence of the electric force, acting on this MP charge (b); The dependence of the corresponding poten- tial energy (c) Fig. 3. The dependence of the potential energy of the MP on the position Dxz  z=x/D for a substrate bias Vb = -140 V If the MP kinetic energy is large enough to over- come the potential barrier, a negatively charged MP may be attracted to the substrate. For copper, velocity range of MPs is 250…450 m/s. Mps with velocity above 400 m/s overcome the potential barrier and attracted to the substrate. For velocity range of MPs is 250…400 m/s, MPs are reflected. For bias Vb = -140 V, the profile of potential energy of MP are shown in Fig. 3. This profile means that the MPs can be attracted to the substrate in all velocity range. CONCLUSIONS Charging of copper MPs and its influence on the MP motion in front of the negatively biased copper surface emitted the secondary electrons due to bombardment by MCIs have been investigated. It was found that the pos- sibility of MP attraction increases with negative bias voltage. We show that the results presented here may be applicable to the control of the MPs by modifying the bias of the substrate. REFERENCES 1. R.L. Boxman, P.J. Martin. Handbook of Vacuum Arc Science and Technology: Fundamentals and Applica- tions. New Jersey: “Noyes Publications”, 1995. 2. М.А. Lieberman, A.J. Lichtenberg. Principles of plasma discharge and material processing / John Wiley & Sons, Inc., New York, 1994. 3. G.Yu. Yushkov. Ion velocities in vacuum arc plas- mas// J. Appl. Phys. 2000, v. 88, № 10, p. 5618-5622. 4. J.S. Sherman. Secondary electron emission by multi- ply charged ions and its magnitude in vacuum arcs// J. Appl. Phys. 1977, v. 10, p. 355-359. 5. I. Langmuir. Collected Works of Irving Langmuir / Ed. by G. Suits. New York: “Pergamon”, 1961. 6. A. Piel. Plasma Physics: An introduction to Labora- tory, Space and Fusion Plasmas. “Springer”, 2010. 7. J.E. Daugherty, R.K. Porteous. Electrostatic Forces on Small Particles in Low-pressure Discharges // J. Appl. Phys. 1993, v. 73, p. 161. Article received 22.11.2014 ЗАРЯДКА МАКРОЧАСТИЦ В СЛОЕ ВАКУУМНОЙ ДУГИ ВЫСОКОГО НАПРЯЖЕНИЯ А.А. Бизюков, И.А. Гирка, Е.В. Ромащенко, А.Д. Чибисов Исследуется зарядка макрочастиц (MЧ) напротив отрицательно заряженной поверхности, испускающей вторичные электроны из-за бомбардировки многозарядными ионами (MЗИ). Было найдено, что MЧ могут либо притягиваться к подложке, либо отталкиваться в зависимости от потенциала подложки. ЗАРЯДЖЕННЯ МАКРОЧАСТИНОК У ШАРІ ВАКУУМНОЇ ДУГИ ВИСОКОЇ НАПРУГИ О.А. Бізюков, I.О. Гірка, О.В. Ромащенко, О.Д. Чібісов Досліджено зарядження макрочастинок (МЧ) напроти від’ємно зарядженої поверхні, яка випромінює вторинні електрони завдяки бомбардуванню багатократно зарядженими іонами (БЗІ). Було знайдено, що МЧ можуть або притягатися до підкладки, або відштовхуватися в залежності від потенціалу підкладки. a b c