Determination of the spectra of ion He and H₂ bombardment of autoemitter surface

Analytical consideration and numerical calculations of the parameters describing the operating conditions of field electron emitters and the spectra of the ion bombardment of emitting surface are adduced. Based on the analysis of the obtained energy spectra, it is calculated the dependence of the av...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2015
Main Author: Mazilov, A.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/82437
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Determination of the spectra of ion He and H₂ bombardment of autoemitter surface / A.A. Mazilov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 35-38. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-82437
record_format dspace
spelling Mazilov, A.A.
2015-05-29T16:18:55Z
2015-05-29T16:18:55Z
2015
Determination of the spectra of ion He and H₂ bombardment of autoemitter surface / A.A. Mazilov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 35-38. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 02.30.Mv, 68.37.Vj
https://nasplib.isofts.kiev.ua/handle/123456789/82437
Analytical consideration and numerical calculations of the parameters describing the operating conditions of field electron emitters and the spectra of the ion bombardment of emitting surface are adduced. Based on the analysis of the obtained energy spectra, it is calculated the dependence of the average energy of bombarding ions of helium and hydrogen on the radius of curvature of the emitter in the process of field current extraction and it is proposed an analytical approximation of the results.
Приводятся аналитическое рассмотрение и численные расчеты параметров, описывающих условия эксплуатации полевых электронных эмиттеров и спектры ионной бомбардировки эмитирующей поверхности. На основании анализа полученных энергетических спектров рассчитана зависимость средней энергии бомбардирующих ионов гелия и водорода от радиуса кривизны эмиттера в процессе отбора автоэлектронного тока и предложена аналитическая аппроксимация результатов.
Приводяться аналітичний розгляд і чисельні розрахунки параметрів, що описують умови експлуатації польових електронних емітерів і спектри іонного бомбардування поверхні, що емітує. На підставі аналізу отриманих енергетичних спектрів розрахована залежність середньої енергії бомбардуючих іонів гелію й водню від радіуса кривизни емітера в процесі відбору автоелектронного струму та запропонована аналітична апроксимація результатів.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Физика радиационных повреждений и явлений в твердых телах
Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
Определение спектров бомбардировки ионами He и H₂ поверхности автоэмиттеров
Визначення спектрів бомбардування іонами He і H₂ поверхні автоемітерів
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
spellingShingle Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
Mazilov, A.A.
Физика радиационных повреждений и явлений в твердых телах
title_short Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
title_full Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
title_fullStr Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
title_full_unstemmed Determination of the spectra of ion He and H₂ bombardment of autoemitter surface
title_sort determination of the spectra of ion he and h₂ bombardment of autoemitter surface
author Mazilov, A.A.
author_facet Mazilov, A.A.
topic Физика радиационных повреждений и явлений в твердых телах
topic_facet Физика радиационных повреждений и явлений в твердых телах
publishDate 2015
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Определение спектров бомбардировки ионами He и H₂ поверхности автоэмиттеров
Визначення спектрів бомбардування іонами He і H₂ поверхні автоемітерів
description Analytical consideration and numerical calculations of the parameters describing the operating conditions of field electron emitters and the spectra of the ion bombardment of emitting surface are adduced. Based on the analysis of the obtained energy spectra, it is calculated the dependence of the average energy of bombarding ions of helium and hydrogen on the radius of curvature of the emitter in the process of field current extraction and it is proposed an analytical approximation of the results. Приводятся аналитическое рассмотрение и численные расчеты параметров, описывающих условия эксплуатации полевых электронных эмиттеров и спектры ионной бомбардировки эмитирующей поверхности. На основании анализа полученных энергетических спектров рассчитана зависимость средней энергии бомбардирующих ионов гелия и водорода от радиуса кривизны эмиттера в процессе отбора автоэлектронного тока и предложена аналитическая аппроксимация результатов. Приводяться аналітичний розгляд і чисельні розрахунки параметрів, що описують умови експлуатації польових електронних емітерів і спектри іонного бомбардування поверхні, що емітує. На підставі аналізу отриманих енергетичних спектрів розрахована залежність середньої енергії бомбардуючих іонів гелію й водню від радіуса кривизни емітера в процесі відбору автоелектронного струму та запропонована аналітична апроксимація результатів.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/82437
citation_txt Determination of the spectra of ion He and H₂ bombardment of autoemitter surface / A.A. Mazilov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 35-38. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT mazilovaa determinationofthespectraofionheandh2bombardmentofautoemittersurface
AT mazilovaa opredeleniespektrovbombardirovkiionamiheih2poverhnostiavtoémitterov
AT mazilovaa viznačennâspektrívbombarduvannâíonamiheíh2poverhníavtoemíterív
first_indexed 2025-11-24T11:37:31Z
last_indexed 2025-11-24T11:37:31Z
_version_ 1850845428286750720
fulltext ISSN 1562-6016. ВАНТ. 2015. №2(96) 35 DETERMINATION OF THE SPECTRA OF ION He AND H2 BOMBARDMENT OF AUTOEMITTER SURFACE A.A. Mazilov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: mazilov@kipt.kharkov.ua Analytical consideration and numerical calculations of the parameters describing the operating conditions of field electron emitters and the spectra of the ion bombardment of emitting surface are adduced. Based on the analysis of the obtained energy spectra, it is calculated the dependence of the average energy of bombarding ions of helium and hydrogen on the radius of curvature of the emitter in the process of field current extraction and it is proposed an analytical approximation of the results. PACS: 02.30.Mv, 68.37.Vj INTRODUCTION The development of radiation-resistant materials of reactor building largely complicated by the lack of knowledge of the nature of radiation effects in the relatively unexplored region of very high doses. In works [1, 2] using accelerator simulation technologies there were investigated in detail the processes of interaction of fast charged particles with solids: primary radiation damage of materials, formation and evolution of dislocation structure. As the result, it was achieved a significant progress in the development of concepts of radiation damage of structural materials. However, there are still insufficiently studied experimentally the phenomena accompanying the elementary acts of radiation damage. In this regard, of particular interest are simulated experiments in situ using field ion microscopes with built-in sources of accelerated ions [3, 4]. In such experiments at the atomic level there were detected processes such as surface diffusion, activated by low-energy ion bombardment [5, 6], which play an essential role in radiation damage of materials of the first wall and divertor of fusion devices and is widely used at present in nanotechnology of surface treatment of metals. For irradiation of solids by low-energy ions in the chamber of field emission microscope was used method [7, 8], based on the bombardment of the surface of the needle-shaped sample by ions formed by electron impact ionization of atoms (molecules) of gas that fills the vacuum chamber of the microscope. The resulting ions are accelerated in a strong electric field and bombard the surface of the needle-shaped sample. This technique allows varying in a wide interval of ion beams parameters up to the minimum, corresponding to a single ion collision with the surface, allowing the study of elementary acts of radiation damage. Since using this method there is no possibility of direct experimental determination of the intensity of the ion bombardment of the sample surface, it is necessary to conduct their numerical calculations. Recently in a number of works [9, 10], there was established an analytical framework for calculations of ion bombardment of needle samples in the process of field current extraction. However, these calculations was not took into account found in the work of P.A. Bereznyak and V.V. Slezov [8] features of the configuration space region from which ions, generated with zero initial speed, get to the emitting part of the sample. The present article shows the results of calculations of the ion bombardment of the needle samples in the process of field current extraction that are performed in the framework of Bereznyak-Slezov theory for a wide range of irradiation parameters. RESULTS AND DISCUSSION 1. SIMULATION OF ION SPECTRA The potential distribution near the surface of the needle emitter and in the interelectrode space is satisfactorily described by Bereznyak-Slezov model [8], originally developed to solve the problem of ion bombardment of needle-shaped emitters. The authors convincingly showed that the most part of the ions, formed in the process of field current extraction, bombards the side (tapered) part of the emitter. Emitting region is bombarded mainly from the axial cylindrical region of radius 4.8r0. However, it should be noted that due to the large amount of calculations and the limited memory and speed of used computers, the task was strictly solved only for one set of parameters specific to the field emitters. In this work, we present the results of the analysis and the numerical values of the relevant parameters describing the operating conditions of field electron emitters and the spectra of the ion bombardment of emitting surface. The calculations were performed using Bereznyak-Slezov approximation. The equations of motion of a particle with charge e and mass m, according to this model are of the form:               0 1 0 rmr e  ;               00 1 rmr e  ; (1)             2 1 222 3 22 2 0  AK CC V mr e  ; (2)                       22 2 1 22 2 3 22 2 0 AK CC V mr e  . (3)  and  are interpreted as the components of acceleration along the axis and perpendicular to the axis, respectively. Solving this system in the time scale τ, it can be set polar coordinate of the point of ion contact on the edge. Here mailto:mazilov@kipt.kharkov.ua 36 ISSN 1562-6016. ВАНТ. 2015. №2(96) V CC e m r AK   01 . (4) For determination of the intensity of ion bombardment, we used the approximation formula for the configuration area, from which ions, formed with zero initial velocity, fall on the needle top: ))exp((1 )( 0 1 0       m m A , (5) where γm = 4.80368; A1 = -2485.07; η0 = -18.6127 and Δη = 2.7592. From (5) it follows that the contribution to ion bombardment of emitting surface is provided by the ions formed near the surface of the tip, or in a region close to the symmetry axis. In both cases, for the number of ions N, bombarding the surface per time unit the ratio is applicable:        ddr e j kT p N     max max min0 )( )( 22 3 0 0 ),( 2)( , (6) )( 00 Vr e I kT p kN BS  , η >> 10. (7) Here p is the pressure in the chamber of the microscope, Pa; k=1.3806488·10 -23 – the Boltzmann constant, J/K; T – temperature, K; I  field current, A; e = 1.602176·10 -19 – the electron charge, C; σ(V0) – the ionization cross section, m 2 ; kBS – Bereznyak-Slezov factor, is equal to:      ddkBS      1000 )( 0 22 min 0 )( , (8) where 2 0 2 0 0 ( ) 1 ( ) ( ) ln 1.25 . ( ) 1 ln 1.25 ii i i ii VV EE V E V VV E EE                                 (9) Here Σ(η) is reduced ionization cross section; V(η) – the potential at a given point of the area; Ei – the ionization potential of the gas; ηmin – the distance where V(ηmin) = Ei. Fig. 1 shows the dependence of the numerical coefficient kBS determining the total number of ions bombarding the tip per time unit on the radius of curvature of the shape at the top for helium and hydrogen. Dots represent calculated values, and the solid curve is the proposed approximation: for hydrogen 09618.05.146.15)( 0 rH BS rk  , (10a) for helium 09664.046.146.13)( 0 rHe BS rk  . (10b) In numerical calculations, the operating voltage of the microscope (diode) was determined based on the condition of constancy of the field strength at the top of the emitter (F = 5 V/nm). As follows from the Fig. 1, the coefficient kBS significantly depends on the size of the emitter. The maximum value kBS is 13.5 that is consistent with calculations [8] carried out for the tip with a radius equal to 100 nm. 0 20 40 60 80 100 0 2 4 6 8 10 12 14 16 k B S r 0 , nm H He Fig. 1. The intensity of the ion bombardment of the tip depending on the radius of curvature of the emitter From Fig. 2 it follows that the dependence of reduced ionization cross section of helium and hydrogen Σ(η) from the dimensionless axial coordinates (cylindrical system) has a sharp maximum near the shape top (r0 = 100 nm). For large values of coordinates and until the anode a cross section changes slightly. 0 2 4 6 8 10 0 2 4 6 8 10 r 0 = 100 nm      H2 He Fig. 2. Reduced ionization cross section of helium and hydrogen depending on the dimensionless coordinate directed along the optical axis The distribution function for the energy of bombarding ions can be obtained from expressions (7) and (9): 0 0 ( ) ( ) max max2 2 00 (2 1)( ) ln(2 1) . 2 V V f d V                           (11) We have performed calculations for emitters with different radii of curvature at the top, corresponding to the typical conditions of the ion microscopy experiments. As the result, the curves of the energy distribution of bombarding ions were built. Fig. 3 shows the energy spectra of ions of helium and hydrogen, bombarding the hemispherical part of emitters with radii of curvature of 10, 25, 50 and 100 nm, respectively. These values of the radii of curvature are typical for experiments with nanoemitters, samples, used in the traditional field ion microscopy, studying of the mechanisms of radiation damage of the ISSN 1562-6016. ВАНТ. 2015. №2(96) 37 surface and operating of the needle nonheated cathodes in high-resolution electron microscopy. 0 200 400 600 800 1000 0,00 0,01 0,02 0,03 0,04 0,05 0,06 f, a .u W, eV r 0 = 10 nm r 0 = 25 nm r 0 = 50 nm r 0 = 100 nm He 0 200 400 600 800 1000 0,00 0,02 0,04 0,06 0,08 0,10 f, a .u H2 W, eV r 0 = 10 nm r 0 = 25 nm r 0 = 50 nm r 0 = 100 nm Fig. 3. Spectra of ion bombardment of the emitting part of the needle-shaped cathode with different radii of curvature in the process of field current extraction at the atmosphere of helium and hydrogen 2. CALCULATION OF THE ION BOMBARDMENT FLUENCE Fig. 4 shows the dependence of the average energy of ion bombardment on the radius of curvature of the emitter in the process of field current extraction in the atmosphere of helium and hydrogen. The solid curve corresponds to calculations by the formula (11) obtained by numerical solution of the trajectory tasks. The dotted curve is the result of calculations by the approximate formula proposed in [5]. A comparison of these data shows an almost identical near the radii of curvature of the order of 50 nm, i.e., the area where the most ion- microscopic studies of radiation damage of autocathodes are carried out. Outside these values, there is only a slight deviation from the linear dependence, proposed on the basis of analytical calculations in [5]. To calculate the number of ions N, bombarding the surface of the tip per time unit (7) it is necessary to calculate the ionization cross section σ(W) of helium and hydrogen atoms. We used experimental data values σ(W) from [11, 12], and approximated them by formula:           2 32 2 2 1 ln)( A W A WA AW AW . (12) where A1 = 8317·10 -21 ; A2 = 24.6; A3 = 0.986 for helium and A1 = 7130·10 -21 ; A2 = 13.595; A3 = 0.92136 for hydrogen. 0 20 40 60 80 100 120 0 100 200 300 400 500 He H <W>=eFr 0 < W B S > , eV r 0 , nm Fig. 4. The dependence of the average energy of ion bombardment on the radius of curvature of the emitter 0 400 800 1200 1600 2000 0 1 2 3 4 W, eV  W         cm 2  He 0 400 800 1200 1600 2000 0 2 4 6 8 10  W         cm 2  W, eV H2 Fig. 5. The dependence of the ionization cross section on the electrons energy for helium and hydrogen Fig. 5 shows the dependence of the ionization energy cross section on electrons energy for helium and hydrogen. Dots represent experimental data [11, 12], and the solid curve is the approximation formula (12). Solving equation (7) considering (10a), (10b), (12) in terms of p = 0.01333 Pa; T = 300 K; I = 10 -7 A; r0 = 30 nm; V0 = 2 kV, we obtain that each surface atom is subjected to a collision once on time of 152 c by helium ions and once on time of 66 c by hydrogen ions (assuming that 1 cm 2 of the tip surface area contains 10 15 atoms). Hence the fluence of ions: t r N  2 02 (13) 38 ISSN 1562-6016. ВАНТ. 2015. №2(96) for time t = 100 c is ФHe = 6.575·10 18 m -2 for helium and ФH = 15.14·10 18 m -2 for hydrogen. CONCLUSIONS A mathematical analysis and numerical calculations of the parameters describing the operating conditions of field electron emitters was performed and the spectra of the ion bombardment of emitting surface were obtained. There was established that at typical field emission researches of experimental conditions (F ≤ 5 V/nm, r0 ≤ 100 nm) ions, formed when r ≤ 10r0, have energy below the threshold of radiation displacement of lattice atoms. There was established the dependence of the numerical coefficient kBS determining the total number of ions bombarding the tip per time unit from the radius of curvature of the tip at the top. Based on the analysis of obtained energy spectra there was calculated dependence of the average energy of bombarding ions on the radius of curvature of the emitter in the process of field current extraction and analytical approximation results were proposed. REFERENCES 1. И.М. Неклюдов, В.Н. Воеводин, Г.Д. Толсто- луцкая. Эффекты взаимодействия потоков заряженных частиц с твердыми телами. Современный статус имитационных исследований // 9th International Conference “Interaction of Radiation with Solids”, September 2022, 2011, Minsk, Belarus. 2. А.В. Пермяков, В.В. Мельниченко, В.В. Брык, В.Н. Воеводин, Ю.Э. Куприянова. Устройство для моделирования эффектов взаимодействия нейтронных потоков с материалами ядерных реакторов // ВАНТ. 2014, №2, c. 180-186. 3. I.M. Neklyudov, E.V. Sadanov, G.D. Tolsto- lutskaja, V.A. Ksenofontov, T.I. Mazilova, and I.M. Mikhailovskij. Interstitial atoms in tungsten: Interaction with free surface and in situ determination of formation energy // Physical Review B. 2008, v. 78, p. 115418 (4 p). 4. T.I. Mazilova, E.V. Sadanov, V.A. Ksenofontov, I.M. Mikhailovskij. One-dimensional surface damage at grazing projectile incidence: linear vacancy chains on channeled planes // Surface Science. 2013, v. 617, p. 136-140. 5. Т.И. Мазилова, И.М. Михайловский, В.А. Ксенофонтов. Радиационно-стимулированная эрозия поверхности автоэлектронных эмиттеров // Письма в ЖТФ. 2001, т. 27, в. 18, с. 71-77. 6. T.I. Mazilova, I.M. Mikhailovskij. Atomic mechanism of radiation-induced erosion of field electron emitters // Surf. Interface Anal. 2004, v. 36, p. 510-514. 7. J.Y. Cavaillé, M. Drechsler. Surface self- diffusion by ion impact // Surface Science. 1978, v. 75, N 2, p. 342-354. 8. П.А. Березняк, В.В. Слезов. Расчет характеристик ионного потока, бомбардирующего вершину игольчатого автоэмиттера // Радиотехника и электроника. 1972, №2, c. 354-358. 9. Г.С. Бочаров, А.В. Елецкий. Деградация полевого эмиссионного катода на основе углеродных нанотрубок в результате ионного распыления // ЖТФ. 2012, т. 82, в. 7, c. 112-116. 10. G.S. Bocharov and A.V. Eletskii. Theory of carbon nanotube (CNT)-based electron field emitters // Nanomaterials. 2013, v. 3, p. 393-442. 11. R. Rejoub, B.G. Lindsay, R.F. Stebbings. Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases // Physical Review A. 2002, v. 65(4), p. 042713-3. 12. H.C. Straub, P. Renault, B.G. Lindsay, K.A. Smith, R.F. Stebbings. Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV // Physical Review A. 1996, v. 54 (3), p. 2149. Статья поступила в редакцию 18.02.2015 ОПРЕДЕЛЕНИЕ СПЕКТРОВ БОМБАРДИРОВКИ ИОНАМИ He И H2 ПОВЕРХНОСТИ АВТОЭМИТТЕРОВ A.A. Мазилов Приводятся аналитическое рассмотрение и численные расчеты параметров, описывающих условия эксплуатации полевых электронных эмиттеров и спектры ионной бомбардировки эмитирующей поверхности. На основании анализа полученных энергетических спектров рассчитана зависимость средней энергии бомбардирующих ионов гелия и водорода от радиуса кривизны эмиттера в процессе отбора автоэлектронного тока и предложена аналитическая аппроксимация результатов. ВИЗНАЧЕННЯ СПЕКТРІВ БОМБАРДУВАННЯ ІОНАМИ He І H2 ПОВЕРХНІ АВТОЕМІТЕРІВ О.О. Мазілов Приводяться аналітичний розгляд і чисельні розрахунки параметрів, що описують умови експлуатації польових електронних емітерів і спектри іонного бомбардування поверхні, що емітує. На підставі аналізу отриманих енергетичних спектрів розрахована залежність середньої енергії бомбардуючих іонів гелію й водню від радіуса кривизни емітера в процесі відбору автоелектронного струму та запропонована аналітична апроксимація результатів. http://www.sciencedirect.com/science/article/pii/003960287890256X http://www.sciencedirect.com/science/article/pii/003960287890256X http://www.sciencedirect.com/science/journal/00396028 http://www.sciencedirect.com/science/journal/00396028/75/2 http://www.sciencedirect.com/science/journal/00396028/75/2