Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma
The electrochemical characteristics of nanostructured TiAlYN coatings deposited on 12X18H10T steel substrates are investigated in 3% aqueous solution of NaCl. The coatings were deposited from filtered vacuum-arc plasma by PIII&D method. Measurements of corrosion potentials Ecor and anodic polari...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2015 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/82449 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma / V.V. Vasyliev, A.A. Luchaninov, E.K. Sevidova, V.E. Strel'nitski // Вопросы атомной науки и техники. — 2015. — № 2. — С. 100-104. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82449 |
|---|---|
| record_format |
dspace |
| spelling |
Vasyliev, V.V. Luchaninov, A.A. Sevidova, E.K. Strel'nitskij, V.E. 2015-05-29T17:27:12Z 2015-05-29T17:27:12Z 2015 Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma / V.V. Vasyliev, A.A. Luchaninov, E.K. Sevidova, V.E. Strel'nitski // Вопросы атомной науки и техники. — 2015. — № 2. — С. 100-104. — Бібліогр.: 16 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/82449 541.13 The electrochemical characteristics of nanostructured TiAlYN coatings deposited on 12X18H10T steel substrates are investigated in 3% aqueous solution of NaCl. The coatings were deposited from filtered vacuum-arc plasma by PIII&D method. Measurements of corrosion potentials Ecor and anodic polarization curves showed that the best protection against galvanic corrosion (GC) provides TiA1YN coating containing 0.2 at.% Y deposited on the substrate when applying pulsed bias potential of -1.5 kV amplitude. Addition DC bias potential of -150 V to pulse one leads to deterioration of the protective properties: activation potential of anodic processes (APAP) decreases in 3…4 times. Increase in TiA1YN coatings deposition rate promotes improvement their protective properties due to improved adhesion and decreased level of residual stress. Исследованы электрохимические характеристики наноструктурных TiAlYN-покрытий на стали 12Х18Н10Т в 3% водном растворе NaCl. Покрытия осаждались из фильтрованной вакуумно-дуговой плазмы методом PIII&D. Измерения потенциалов коррозии Екор, а также анодные поляризационные кривые показали, что наилучшую защиту от электрохимической коррозии (ЭХК) обеспечивают TiA1YN-покрытия с содержанием Y 0,2 ат.%, осажденные при подаче на подложку импульсного потенциала смещения амплитудой -1,5 кВ. Подача дополнительно постоянного потенциала смещения -150 В приводит к ухудшению защитных свойств: потенциал активации анодных процессов (ПААП) уменьшается в 3–4 раза. Повышение скорости осаждения способствует улучшению защитных свойств TiA1YN-покрытий, что обусловлено улучшением адгезии и снижением уровня остаточных напряжений. Досліджено електрохімічні характеристики наноструктурних TiAlYN-покриттів на сталі 12Х18Н10Т в 3% водному розчині NaCl. Покриття осаджувались з фільтрованої вакуумно-дугової плазми методом PIII&D. Вимірювання потенциалів корозії Екор, а також анодні поляризаційні криві показали, що найкращий захист від електрохімічної корозії (ЕХК) забезпечують TiA1YN-покриття з вмістом Y 0,2 ат.%, осаджені при подачі на підкладку імпульсного потенціала зміщення амплітудою -1,5 кВ. Подача додатково постійного потенціала зміщення -150 В призводить до погіршення захисних властивостей: потенціал активації анодних процесів (ПААП) зменшується в 3–4 рази. Підвищення швидкості осадження сприяє поліпшенню захисних властивостей TiA1YN-покриттів, що зумовлено поліпшенням адгезії та зниженням рівня залишкових напружень. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика радиационных и ионно-плазменных технологий Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma Коррозионная стойкость наноструктурных TiAlYN-покрытий, синтезированных PIII&D-методом из фильтрованной вакуумно-дуговой катодной плазмы Корозійна стійкість наноструктурних TiAlYN-покриттів, синтезованих PIII&D-методом з фільтрованої вакуумно-дугової катодної плазми Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma |
| spellingShingle |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma Vasyliev, V.V. Luchaninov, A.A. Sevidova, E.K. Strel'nitskij, V.E. Физика радиационных и ионно-плазменных технологий |
| title_short |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma |
| title_full |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma |
| title_fullStr |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma |
| title_full_unstemmed |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma |
| title_sort |
corrosion durability of nanostructured tialyn coatings, deposited by piii&d method from filtered vacuum-arc cathodic plasma |
| author |
Vasyliev, V.V. Luchaninov, A.A. Sevidova, E.K. Strel'nitskij, V.E. |
| author_facet |
Vasyliev, V.V. Luchaninov, A.A. Sevidova, E.K. Strel'nitskij, V.E. |
| topic |
Физика радиационных и ионно-плазменных технологий |
| topic_facet |
Физика радиационных и ионно-плазменных технологий |
| publishDate |
2015 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Коррозионная стойкость наноструктурных TiAlYN-покрытий, синтезированных PIII&D-методом из фильтрованной вакуумно-дуговой катодной плазмы Корозійна стійкість наноструктурних TiAlYN-покриттів, синтезованих PIII&D-методом з фільтрованої вакуумно-дугової катодної плазми |
| description |
The electrochemical characteristics of nanostructured TiAlYN coatings deposited on 12X18H10T steel substrates are investigated in 3% aqueous solution of NaCl. The coatings were deposited from filtered vacuum-arc plasma by PIII&D method. Measurements of corrosion potentials Ecor and anodic polarization curves showed that the best protection against galvanic corrosion (GC) provides TiA1YN coating containing 0.2 at.% Y deposited on the substrate when applying pulsed bias potential of -1.5 kV amplitude. Addition DC bias potential of -150 V to pulse one leads to deterioration of the protective properties: activation potential of anodic processes (APAP) decreases in 3…4 times. Increase in TiA1YN coatings deposition rate promotes improvement their protective properties due to improved adhesion and decreased level of residual stress.
Исследованы электрохимические характеристики наноструктурных TiAlYN-покрытий на стали 12Х18Н10Т в 3% водном растворе NaCl. Покрытия осаждались из фильтрованной вакуумно-дуговой плазмы методом PIII&D. Измерения потенциалов коррозии Екор, а также анодные поляризационные кривые показали, что наилучшую защиту от электрохимической коррозии (ЭХК) обеспечивают TiA1YN-покрытия с содержанием Y 0,2 ат.%, осажденные при подаче на подложку импульсного потенциала смещения амплитудой -1,5 кВ. Подача дополнительно постоянного потенциала смещения -150 В приводит к ухудшению защитных свойств: потенциал активации анодных процессов (ПААП) уменьшается в 3–4 раза. Повышение скорости осаждения способствует улучшению защитных свойств TiA1YN-покрытий, что обусловлено улучшением адгезии и снижением уровня остаточных напряжений.
Досліджено електрохімічні характеристики наноструктурних TiAlYN-покриттів на сталі 12Х18Н10Т в 3% водному розчині NaCl. Покриття осаджувались з фільтрованої вакуумно-дугової плазми методом PIII&D. Вимірювання потенциалів корозії Екор, а також анодні поляризаційні криві показали, що найкращий захист від електрохімічної корозії (ЕХК) забезпечують TiA1YN-покриття з вмістом Y 0,2 ат.%, осаджені при подачі на підкладку імпульсного потенціала зміщення амплітудою -1,5 кВ. Подача додатково постійного потенціала зміщення -150 В призводить до погіршення захисних властивостей: потенціал активації анодних процесів (ПААП) зменшується в 3–4 рази. Підвищення швидкості осадження сприяє поліпшенню захисних властивостей TiA1YN-покриттів, що зумовлено поліпшенням адгезії та зниженням рівня залишкових напружень.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82449 |
| citation_txt |
Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII&D method from filtered vacuum-arc cathodic plasma / V.V. Vasyliev, A.A. Luchaninov, E.K. Sevidova, V.E. Strel'nitski // Вопросы атомной науки и техники. — 2015. — № 2. — С. 100-104. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT vasylievvv corrosiondurabilityofnanostructuredtialyncoatingsdepositedbypiiidmethodfromfilteredvacuumarccathodicplasma AT luchaninovaa corrosiondurabilityofnanostructuredtialyncoatingsdepositedbypiiidmethodfromfilteredvacuumarccathodicplasma AT sevidovaek corrosiondurabilityofnanostructuredtialyncoatingsdepositedbypiiidmethodfromfilteredvacuumarccathodicplasma AT strelnitskijve corrosiondurabilityofnanostructuredtialyncoatingsdepositedbypiiidmethodfromfilteredvacuumarccathodicplasma AT vasylievvv korrozionnaâstoikostʹnanostrukturnyhtialynpokrytiisintezirovannyhpiiidmetodomizfilʹtrovannoivakuumnodugovoikatodnoiplazmy AT luchaninovaa korrozionnaâstoikostʹnanostrukturnyhtialynpokrytiisintezirovannyhpiiidmetodomizfilʹtrovannoivakuumnodugovoikatodnoiplazmy AT sevidovaek korrozionnaâstoikostʹnanostrukturnyhtialynpokrytiisintezirovannyhpiiidmetodomizfilʹtrovannoivakuumnodugovoikatodnoiplazmy AT strelnitskijve korrozionnaâstoikostʹnanostrukturnyhtialynpokrytiisintezirovannyhpiiidmetodomizfilʹtrovannoivakuumnodugovoikatodnoiplazmy AT vasylievvv korozíinastíikístʹnanostrukturnihtialynpokrittívsintezovanihpiiidmetodomzfílʹtrovanoívakuumnodugovoíkatodnoíplazmi AT luchaninovaa korozíinastíikístʹnanostrukturnihtialynpokrittívsintezovanihpiiidmetodomzfílʹtrovanoívakuumnodugovoíkatodnoíplazmi AT sevidovaek korozíinastíikístʹnanostrukturnihtialynpokrittívsintezovanihpiiidmetodomzfílʹtrovanoívakuumnodugovoíkatodnoíplazmi AT strelnitskijve korozíinastíikístʹnanostrukturnihtialynpokrittívsintezovanihpiiidmetodomzfílʹtrovanoívakuumnodugovoíkatodnoíplazmi |
| first_indexed |
2025-11-26T18:39:10Z |
| last_indexed |
2025-11-26T18:39:10Z |
| _version_ |
1850768676306812928 |
| fulltext |
100 ISSN 1562-6016. ВАНТ. 2015. №2(96)
Раздел третий
ФИЗИКА РАДИАЦИОННЫХ И ИОННО-ПЛАЗМЕННЫХ
ТЕХНОЛОГИЙ
UDC 541.13
CORROSION DURABILITY OF NANOSTRUCTURED TiAlYN
COATINGS, DEPOSITED BY PIII&D METHOD FROM FILTERED
VACUUM-ARC CATHODIC PLASMA
V.V. Vasyliev, A.A. Luchaninov, E.K. Sevidova*, V.E. Strel'nitskij
National Science Centеr “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
*Science-Technical University «Kharkov Polytechnical Institute», Kharkov, Ukraine
The electrochemical characteristics of nanostructured TiAlYN coatings deposited on 12X18H10T steel
substrates are investigated in 3% aqueous solution of NaCl. The coatings were deposited from filtered vacuum-arc
plasma by PIII&D method. Measurements of corrosion potentials Ecor and anodic polarization curves showed that
the best protection against galvanic corrosion (GC) provides TiA1YN coating containing 0.2 at.% Y deposited on
the substrate when applying pulsed bias potential of -1.5 kV amplitude. Addition DC bias potential of -150 V to
pulse one leads to deterioration of the protective properties: activation potential of anodic processes (APAP)
decreases in 3…4 times. Increase in TiA1YN coatings deposition rate promotes improvement their protective
properties due to improved adhesion and decreased level of residual stress.
INTRODUCTION
Plasma immersion ion implantation and deposition
(PIII&D) method combined with cathodic-arc plasma
filtering allows fabricate high quality functional coating
on various materials with good adhesion. In KIPT were
developed a number of technological processes of
synthesis of nanostructured nitride coatings based on
TiN [1–5] by this method using the rectilinear filtered
cathodic vacuum arc plasma source (RFCVAPS) of
original design [6] when a pulsed high voltage bias
potential is applied to the substrate. Nitride coatings of
Ti-Al-Y-N system, synthesized by this method have a
nanocrystalline structure with a cubic lattice of NaCl
type, with the size of coherent scattering regions varied
in the range of 10…22 nm [4].
High quality filtering of the plasma stream from
macroparticles as implemented in the source, in
combination with minimizing loss of plasma in the
filtration process through the use of a new method for
transporting the plasma flows from the cathode to the
substrate [6] provides not only high quality of the
synthesized coatings but also high productivity of the
process of synthesis [7]. Using the multicomponent
alloy cathodes of different elemental composition
manufactured by “Real” LTD, Zaporozhye in the
developed processes allows produce the nitride
nanostructured coatings, in particular of Ti-Al-Y-N
system, with unique physical and mechanical properties:
high heat resistance and high resistance to cavitation
and abrasion wear by compared to TiN coatings [8, 9].
Nitride coatings have previously been proposed to
protect against galvanic corrosion (GC). In [10] the
electrochemical properties of aluminum nitride as a
protective coating on bioengineering materials in the
model physiological solution (0.9% NaCl) were
investigated. Studies showed that the protective
properties of the coatings are strongly dependent on the
mode of their deposition. It is interesting to study the
possibilities of using multi-component nitride coatings
[8, 9] to protect against GC.
The aim of this work is to study the influence of the
yttrium content as well as deposition parameters on the
protective properties of TiAlYN coatings, deposited on
12X18H10T stainless steel by PIII&D method from the
filtered flow of cathodic vacuum arc plasma against
galvanic corrosion in a 3% solution of NaCl.
1. EXPERIMENTAL
TiAlYN coatings deposition was carried out from
filtered flows of cathodic vacuum arc plasma using an
improved version of RFCVAPS [5]. RFCVAPS
provides high deposition rate of 10…20 µ/h at an arc
current of 100 A with the heterogeneity of the coating
thickness of ±5% inside the circle of 180 mm in
diameter.
The coatings were deposited on the polished
substrates of 12X18H10T stainless steel of
17×20×0.6 mm size. For deposition the nanostructured
TiAlYN coatings with different Y content the cathodes
of Ti0.5-xAl0.5Yx composition where x = 0; 0.002; 0.004
and 0.01 have been used.
In each deposition process the substrates were
placed along the axis of the vacuum chamber in three
positions at three different distances L from the
RFCVAPS outlet: 1st position L = 150 mm, 2nd posi-
tion L = 210 mm, and a 3rd position L = 360 mm.
Before placing in a vacuum chamber, the substrates
were cleaned with acetone and alcohol in an ultrasonic
bath for 15 minutes. During coating deposition the
substrate was supplied by pulsed bias potential of
-1.5 kV amplitude, and in some experiments, in addition
to the pulses had a DC potential -150 V. For coatings
which were deposited only at pulsed bias potential, in
the intervals between pulses the substrate was at a self-
consistent “floating” potential 3…20 V. The repetition
frequency and duration of high voltage pulses were
24 kHz and 5 μs, respectively. Prior to coating
ISSN 1562-6016. ВАНТ. 2015. №2(96) 101
deposition the sample surfaces were cleaned by gas ion
bombardment in a pulsed glow discharge in argon at a
pressure of 4 Pa and amplitude of pulsed substrate bias
of 2.5 kV for 5 minutes. Then the surface of the samples
was cleaned by cathodic plasma ions bombardment at
pulsed bias potential of 2.5 kV for 3 minutes at argon
pressure of 0.01 Pa. Thereafter, thin interlayer of the
cathode material was deposited for 3 minutes, using the
same pulse potential as at the subsequent deposition of a
nitride coating. Synthesis of the TiAlYN coating was
performed at an arc current of 100 A in a mixture of
nitrogen and argon with partial pressure of 0.13 and
0.013 Pa, respectively. Duration of deposition was of
30 minutes.
The elemental composition of the coating material
was monitored by X-ray fluorescence analysis (XRA)
on a vacuum scanning crystal-diffraction spectrometer
SPRUT. X-ray diffraction studies were carried out on a
DRON-3 device in the filtered Cu-Kα radiation.
Hardness (H) and Young's modulus (E) of the coatings
were measured by G200 nanoindenter using CSM
(continuous stiffness measurement) mode. H value was
taken at a depth of indentation of 10% of the film
thickness.
The protective properties of the coatings were
studied on electrochemical behavior of the system
stainless steel TiAlYN coating in a corrosive envi-
ronment of 3% NaCl water solution by measuring the
steady-state values of the corrosion potentials, as well as
determine the electrochemical activity by recording and
analizing the anodic polarization curves (at a speed of 1
mV/s from the static potential values). A standard silver
chloride electrode (s.c.e.) served as the reference
electrode in the electrochemical measurements.
2. EXPERIMENTAL RESULTS
AND DISCUSSION
2.1. ACTIVATION POTENTIALS OF THE
ANODIC PROCESS (APAP)
Measurement of corrosion potentials in a corrosive
environment of 3% NaCl water solution (Table) showed
that their values varied randomly over time, even for the
same group of samples. During the same period of time
both shift to positive potential values, and shift to negative
values can be observed. This behavior is characteristic for
electrochemical behavior of the materials such as stainless
steel 12X18H10T (substrate material) with a surface
initially covered with an oxide passivation film, which can
be "ennobled" in the environment of the corrosive chloride
ions and then repassivated. These phenomena appear
abrupt changes of potential values from "+" to "-" and vice
versa. In the case specimens under investigation these
processes are affected by the character of the coating
porosity (defects) and their wettability, expressed unstable
corrosion potentials values and non-reproducible
measurement results, even for a relatively long aging in
solution (3…5 hours and more). Therefore corrosion
potential values in our studies can not serve as a reliable
criterion of the corrosion resistance of the samples with
different coatings in the environment of 3% solution of
NaCl. More information will provide anodic polarization
curves. From them the activation potentials of anodic
processes (APAP) were determined on the beginning of the
intense anodic current growth.
From the analysis of the anodic polarization curves and
the results of measuring the APAP values, which is a
measure of the electrochemical activity of the samples,
follows that the TiAlYN coating provides a protective
effect with respect to the substrate, 12X18H10T steel.
Experiments show that the protective properties of the
coatings depend on their elemental composition, thickness
h, and the preparation conditions, particularly deposition
rate Vdep.
When TiAlN was doped with yttrium in an amount of
0.2…1 at.% (Fig. 1, curve 24 and Fig. 2, curve 3) for
coatings of approximately equal thickness (h = 6 and
6.5 m), APAP increase (i.e. decrease in their electro-
chemical activity) from + 0.1 to 0.58 V was recorded. The
smallest electrochemical activity demonstrated TiAlYN
coating with the percentage of Y equal to 0.2 at.% (see Fig.
2, curve 3). For him, APAP = 0.58 V.
For coatings of the same elemental composition but
with different thicknesses due to different rates of
deposition, dependence of the protective properties on both
the thickness and the rate of deposition was observed. As
seen from the anodic polarization curves (see Fig. 2), the
protective properties of the TiAlYN coating with yttrium
content of 0.2 at.%, deposited at the amplitude of the
pulsed substrate bias potential of Upulse= -1.5 kV, increased
with increasing thickness (proportional to the deposition
rate).
Corrosion potential Ecor and APAP of the samples TiAlYN coatings of thickness h with various Y content, deposited
on the 12X18Н10Т steel substrates at pulse substrate bias Upulse = -1.5 kV and various DC potential values.
PN2 = 0.13 Pa, tdep = 30 min
Y cont,
at. %
h,
m
Vdep,
m/h
UDC, V APAP, V
Ecor, V after τ, h Ecor, V
τ =0,5 1 2 3 Ageing, (..*) day
0 6 12 float. 0.05 -0.15
0.4 6 12 float. 0.07 -0.12 -0.17 -0.11 -0.11 -0.05 (21*)
0.2 6 12 float. 0.58 -0.02 -0.02
0.2 3.3 6.6 float. 0.46 -0.18 -0.03 -0.04 -0.06 (18*)
0.2 1.5 3.0 float. 0.3 -0.01 -0.03 0.18 -0.19 -0.11 (16*)
0.2 4.9 9.8 -150 0.2 -0.11 -0.15 (16*)
0.2 2.9 5.8 -150 -0.03 -0.28 -0.34 -0.06 (18*)
0.2 1.1 2.2 -150 0.18 -0.02 0.12 0.08 -0.06 (18*)
1.0 6.5 13 float. 0.1 -0.11 (20*)
Note: * after keeping the samples in a solution, days.
102 ISSN 1562-6016. ВАНТ. 2015. №2(96)
Fig. 1. Anodic polarization curves of the samples on the
12Х18Н10Т substrates: no coating (1);
coatings of thickness h = 6 µm: TiAlN (2),
TiAlYN (0.4 at.% Y) (3) and TiAlYN (1 at.% Y) (4).
Substrate bias during coatings deposition:
Upulse = -1.5 kV
Fig. 2. Anodic polarization curves of the samples with
the TiAlYN (0.2 at.% Y) coatings of various thickness
h deposited on 12Х18Н10Т substrates: h = 1.5 µm (1);
h = 3.3 µm (2); h = 6 µm (3). Substrate bias during
coatings deposition: Upulse = -1.5 kV
The investigated electrochemical system consists of
two different materials: stainless steel 12X18H10T
(substrate material), originally covered with an oxide
passivation film, which can be subjected to “chloride
attack” and then repassivation even in the steady-state
conditions at “stationary” corrosion potential, and thin
protective coating layer with a low electrochemical
activity. The main factors determining the
electrochemical behavior of the system is porosity
(defectiveness) of the coatings and wettability of their
surface. Wettability is determined by the surface
properties and elemental composition of the coating
material, porosity (defects) by adhesion to the
substrate and the level of internal stress σ in the coating.
In the case measuring the “stationary” corrosion
potential the combined effect of these factors resulted in
unstable, non-reproducible values of the potential.
The surface condition and residual stress level σ in
the coating influence the level of adhesion to the
substrate. The defects of the substrate surface are the
places of pores formation in the coating. The coating
will flake off when the elastic energy per unit volume at
a given σ exceeds the surface fracture energy [11]:
σ
2
h/2E > 2γ, or h > 4γE/σ
2
,
(1)
where γ is the surface fracture energy, E is modulus of
elasticity of the coating.
Therefore, for h ≥ 4γE/σ
2
partial destruction of the
coating can occurred in form the cracks or local
delamination, which appears as sharp deterioration in its
protective characteristics as the experiments show.
Analysis shows that the level of residual stress in the
coating depends on several factors. The ion energy at
the vacuum-arc deposition is of tens of electron volts, so
even if the floating potential is applied to the substrate,
the penetration of the ions into the subsurface layer of
the coating occurs, resulting in increase of the structure
defects density, and the compression stress is formed
there.
The level of stress is a complex function of the
substrate potential during deposition, both of its DC
component and pulse one (pulse amplitude, duration and
repetition frequency). Also strongly influences the
temperature of the coating during deposition, increase in
temperature reduces the defectiveness and causes the
stress relaxation.
In multi-component nitride coatings another possible
cause of the stress generation may be the change in the
phase composition of the coating. Thus, in the particular
case TiAlN the spinodal decomposition of the solid
solution can occur with the precipitation of X-ray
amorphous cubic TiN and AlN clusters, having different
lattice parameters [12, 13], which may cause the stress
state of the coating.
Differences in thermal linear expansion coefficients
of the substrate material (stainless steel) and a nitride
coating, heated to a sufficiently high temperature during
coating deposition, after cooling for example to room
temperature, result in generating the compressive stress
of thermal origin [14].
Fig. 3 shows the anodic polarization curves of the
samples with TiAlYN coating containing 0.2 at.%
yttrium, deposited over the same period (30 min) with
different deposition rates on substrates made of stainless
steel, with thicknesses of h = 1.1; 2.9 and 4.9 µm
(curves 2, 1 and 3 respectively). Substrate bias potential
during coatings deposition was joint DC potential of
-150 V and a pulsed one with an amplitude of -1.5 kV.
We see that the lowest APAP value has the sample with
TiAlYN coating of h = 2.9 µm thickness (see Fig. 3,
curve 1) and the largest one the specimens with
thicknesses h = 1.1; 4.9 µm (see Fig. 3, curves 2 and 3
respectively). Thus, for a given group of samples
deposited with the joint DC and pulsed potential on the
substrate, the protective properties of GC not correlate
with the thickness of the coating.
Comparison of anodic polarization curves in Figs. 3
and 2 shows that DC potential of -150 V additional to
the pulse substrate bias of -1.5 kV in TiAlYN coatings
deposition reduces their APAP value in about
3…4 times as compared with the mode of only pulsed
substrate bias potential.
The most probable reason for the APAP value
decrease in this case may be the increase in the level of
residual stress and elevated level of the defects
generated in the coating synthesized in this mode.
ISSN 1562-6016. ВАНТ. 2015. №2(96) 103
Fig. 3. Anodic polarization curves of the samples with
the TiAlYN (0.2 at.% Y) coatings of various thickness h
deposited on 12Х18Н10Т substrates: h = 2.9 m(1);
h = 1.1 m (2); h = 4.9 m (3).
Substrate bias during coatings deposition: joint
Upulse = -1.5 kV and UDC = -150 V
In [15] it was shown that at floating value of the
substrate potential the TiAlYN coatings formed with the
level of residual compressive stress of 7.5 GPa. Supply
to the substrate a high voltage pulsed bias potential
during coating synthesis generally reduces the level of
residual stress. The dependence of the stress for
TiAlYN coatings on the amplitude of the voltage pulses
Upulse is nonmonotonic [16], when Upulse increases from
0 to 1 kV the level of residual stress in the TiAlYN
coatings decreases from 4.7 to 2.7 GPa. With further
increase in the amplitude the residual stress level
increases too and reaches the value of 6…6.5 GPa at
Upulse = -2.5 kV. In our experiments, the coatings were
deposited with a pulse amplitude of -1.5 kV, i.e. under
conditions which remote the minimum stress level
formation.
Efficacy of the pulse bias potential influence on the
structure of the synthesized coatings and consequently
its mechanical characteristics, including residual
internal stress, are determined by the ion energy and ion
flux density on the substrate surface. Namely the ion
current density during the pulse should play the main
role in efficiency of the relaxation processes occurring
in the surface layers of the deposited coating and
reducing the internal stress level.
By reducing the ion current density (deposition rate)
at a fixed Upulse value it is possible decrease the coating
surface temperature during deposition, the maximum
attainable for the duration of the pulse, which leads to
slowing the relaxation processes in the coating. As a
result, the residual stress in a coating at low deposition
rates remains fairly high. Supply a 150 V DC potential
to the substrate leads to its additional heating. After
cooling to room temperature, the coatings deposited at a
sufficiently high temperature undergoes additional
increase in the compressive stress of thermal nature due
to significant difference of thermal linear expansion
coefficients of the substrate material (stainless steel) and
a nitride coating [14]. For large coating thickness the
stress σ in it, according to (1), may lead to failure.
Therefore, reducing the thickness of the coating under
low stress relaxation during its deposition plays a
positive role in the improvement of its protective ability
(see Fig. 3, curve 2).
It was also noted that with increasing duration of
exposure of the sample in the solution its
electrochemical index can “improve”, i.e. the area of
electrochemical passivity increase, what is characterized
by greater APAP value. This is probably due to
additional spontaneous passivation of both the coating
material and the underlayer or the substrate itself in the
pores or cracks.
CONCLUSIONS
1. TiAlYN nanostructured coatings were deposited
on 12X18H10T steel substrates by PIII&D method from
filtered vacuum arc plasma and their electrochemical
characteristics in a 3% aqueous solution of NaCl
investigated.
2. It was shown experimentally that deposition of
TiA1YN coatings in the modes providing a reduction of
residual stress, improves the protective properties of
these coatings against galvanic corrosion (GC).
3. Experimentally shown that the best protective
characteristics against GC has TiA1YN coating with Y
concentration of 0.2 at.% deposited when applying
during deposition pulsed substrate bias potential of
negative polarity with the amplitude of -1.5 kV.
4. It was found that supply of the substrate with DC
bias potential of -150 V, in addition to the pulse one
with the amplitude of -1.5 kV, in the deposition of
TiAlYN coatings leads to deterioration of the protective
properties against GC. At that the activation potential of
the anodic processes is reduced to approximately
3…4 times as compared with the case where the
substrate is supplied with pulse potential only.
5. Increasing the deposition rate in the mode of
supplying the substrate with pulse potential bias of
-1.5 kV amplitude improves the protective properties of
the TiA1YN coatings against GC due to improved
adhesion and decrease in the level of residual stresses in
the coatings.
REFERENCES
1. G.P. Zhang, G.J. Gao, X.Q. Wang, G.H. Lv,
L. Zhou, H. Chen, H. Pang, S.Z. Yang. Influence of
pulsed substrate bias on the structure and properties of
Ti-Al-N films deposited by cathodic vacuum arc //
Applied Surface Science. 2012, v. 258, p. 7274-7279.
2. S. Mukherjee, F. Prokert, E. Richter, W. Möller.
Comparison of TiN and Ti1-xAlxN coatings deposited on
Al using plasma immersion ion implantation assisted
deposition // Surf. Coat. Techn. 2005, v. 200,
p. 2459-2464.
3. S. Mukherjee, F. Prokert, E. Richter, W. Moller.
Intrinsic stress and preferred orientation in TiN coatings
deposited on Al using plasma immersion ion
implantation assisted deposition // Thin Solid Films.
2003, v. 445, p. 48-53.
4. V.V. Vasyliev, A.A. Luchaninov, E.N. Re-
shetnyak, G.N. Tolmacheva, V.E. Strel’nitskij.
Influence of pulse bias potential on structure and
hardness of the coatings, deposited from filtered
vacuum-arc plasma // Proceedings of the 4 International
Scientific Conference “Physico-chemical basics of
formation and modification micro-and nanostructures”
FMMN 2010, 6-8 October 2010, Kharkov, Ukraine,
v. 1, p. 85.
104 ISSN 1562-6016. ВАНТ. 2015. №2(96)
5. S.S. Akkaya, V.V. Vasyliev, E.N. Reshetnyak,
K. Kazmanli, N. Solak, V.E. Strel’nitskij, M. Ürgen.
Structure and properties of TiN coatings produced with
PIII&D technique using high efficiency rectilinear filter
cathodic arc plasma // Surf. Coat. Techn. 2013, v. 236,
p. 332-340.
6. Patent RU 2507305 C2, 20.02.2014. Method of
transportation with filtration from macroparticles of
vacuum arc cathode plasma, and device for its
implementation / V.V. Vasyliev, V.E. Strel’nitskij.
Priority 01.09.2011.
7. V.V. Vasyliev, A.A. Luchaninov, V.E. Strel’-
nitskij. High-productive source of cathodic vacuum-arc
plasma with the rectilinear filter // Problems of Atomic
Science and Technology. 2014, N 1 (89), p. 97-100.
8. V.V. Vasyliev, A.A. Luchaninov, E.N. Re-
shetnyak, V.E. Strel’nitskij. Comparative characteristics
of stress and structure of TiN and Ti0,5-xAl0,5YxN
coatings prepared by filtered vacuum-arc PIIID method.
// Proceedings of the International Conference
“Nanomaterials: Applications and Properties”. 2012,
v. 1, N 2, p. 02NFC24-1-3.
9. V. Belous, V. Vasyliev, A. Luchaninov,
V. Marinin, E. Reshetnyak, V. Strel’nitskij,
S. Goltvyanytsya, V. Goltvyanytsya. Cavitation and
abrasion resistance of Ti-Al-Y-N coatings prepared by
the PIII&D technique from filtered vacuum-arc plasma
// Surf. Coat. Techn. 2013, v. 223, p. 68-74.
10. V.V. Vasyliev, A.A. Luchaninov, V.E. Strel’-
nitskij, G.D. Tolstoluckaya, I.E. Kopanets,
E.K. Sevidova, V.I. Kononenko. Properties of
aluminum nitride as protective coating on
bioengineering materials // Problems of Atomic Science
and Technology. 2005, N 3(86), p. 167-170.
11. J. Robertson. Diamond-like amorphous carbon //
Materials Science and Engineering. 2002, R37,
p. 129-281.
12. Paul H. Mayrhofer, A. Horling, L. Karlsson,
J. Sjolen, T. Larsson, C. Mitterer, L. Hultman. Self-
organized nanostructures in the Ti-Al-N system // Appl.
Phys Lett. 2003, v. 83(10), p. 2049-2051.
13. P. Mayrhofer, C. Mitterer, L. Hultman,
H. Clemens. Microstructural design of hard coatings //
Progress in Materials Science. 2006, v. 51 p.1032-1114.
14. V.V. Vasyliev, V.I. Kovalenko, A.A. Lucha-
ninov, V.G. Marinin, E.N. Reshetnyak, V.E. Strel’nit-
skij. Mechanical properties and erosion durability of
vacuum-arc coatings (Ti, Al)N, doped with yttrium //
Proceedings of the 51 International Conference “Actual
problems of solidity”, 16-20 May 2011, Kharkov,
p. 117.
15. V.A. Belous, V.G. Marinin,, V.V. Vasyliev,
V.I. Kovalenko, A.A. Luchaninov, V.G. Marinin,
E.N. Reshetnyak, G.N. Tolmacheva, V.E. Strel’nitskij.
Influence of bias potential on structure and properties
Ti-Al-Y-N coatings, deposited from filtered vacuum-arc
plasma // Proceedings of the 5 International Scientific
Conference “Physico-chemical basics of formation and
modification micro- and nanostructures” – FMMN
2010” 12-14 October, 2011, Kharkov, Ukraine. v. 1,
p. 104-109.
16. E.N. Reshetnyak. Structure and stress state of
TiN and Ti0.5-xAl0.5YxN coatings prepared by the
PIII&D technique from filtered vacuum-arc plasma //
Problems of Atomic Science and Technology. 2014,
N 1(89), p. 159-162.
Cтатья поступила в редакцию 18.09.2014 г.
КОРРОЗИОННАЯ СТОЙКОСТЬ НАНОСТРУКТУРНЫХ TiAlYN-ПОКРЫТИЙ,
СИНТЕЗИРОВАННЫХ PIII&D-МЕТОДОМ ИЗ ФИЛЬТРОВАННОЙ
ВАКУУМНО-ДУГОВОЙ КАТОДНОЙ ПЛАЗМЫ
В.В. Васильев, А.А. Лучанинов, Е.К. Севидова, В.Е. Стрельницкий
Исследованы электрохимические характеристики наноструктурных TiAlYN-покрытий на стали
12Х18Н10Т в 3% водном растворе NaCl. Покрытия осаждались из фильтрованной вакуумно-дуговой плазмы
методом PIII&D. Измерения потенциалов коррозии Екор, а также анодные поляризационные кривые
показали, что наилучшую защиту от электрохимической коррозии (ЭХК) обеспечивают TiA1YN-покрытия с
содержанием Y 0,2 ат.%, осажденные при подаче на подложку импульсного потенциала смещения
амплитудой -1,5 кВ. Подача дополнительно постоянного потенциала смещения -150 В приводит к
ухудшению защитных свойств: потенциал активации анодных процессов (ПААП) уменьшается в 3–4 раза.
Повышение скорости осаждения способствует улучшению защитных свойств TiA1YN-покрытий, что
обусловлено улучшением адгезии и снижением уровня остаточных напряжений.
КОРОЗІЙНА СТІЙКІСТЬ НАНОСТРУКТУРНИХ TiAlYN-ПОКРИТТІВ,
СИНТЕЗОВАНИХ PIII&D-МЕТОДОМ З ФІЛЬТРОВАНОЇ
ВАКУУМНО-ДУГОВОЇ КАТОДНОЇ ПЛАЗМИ
В.В. Васильєв, О.А. Лучанінов, О.К. Севідова, В.Є. Стрельницький
Досліджено електрохімічні характеристики наноструктурних TiAlYN-покриттів на сталі 12Х18Н10Т в
3% водному розчині NaCl. Покриття осаджувались з фільтрованої вакуумно-дугової плазми методом
PIII&D. Вимірювання потенциалів корозії Екор, а також анодні поляризаційні криві показали, що найкращий
захист від електрохімічної корозії (ЕХК) забезпечують TiA1YN-покриття з вмістом Y 0,2 ат.%, осаджені при
подачі на підкладку імпульсного потенціала зміщення амплітудою -1,5 кВ. Подача додатково постійного
потенціала зміщення -150 В призводить до погіршення захисних властивостей: потенціал активації анодних
процесів (ПААП) зменшується в 3–4 рази. Підвищення швидкості осадження сприяє поліпшенню захисних
властивостей TiA1YN-покриттів, що зумовлено поліпшенням адгезії та зниженням рівня залишкових
напружень.
|