Frictional properties of multielement coatings (TiZrHfYNbTa)N
The influence of pressure of nitrogen atmosphere on the structural and phase state and properties of vacuum-arc nitride coatings Ti-Zr-Hf-V-Nb-Ta has been studied. The multi-element nitride coatings deposited in nitrogen, are single-phase with a cubic face-centered cubic lattice (structural type NaC...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/82455 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Frictional properties of multielement coatings (TiZrHfYNbTa)N / U.S. Nyemchenko, V.Ju. Novikov, V.A. Stolbovoy, V.M. Beresnev, O.V. Sobol’ // Вопросы атомной науки и техники. — 2015. — № 2. — С. 139-144. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82455 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-824552025-02-10T00:43:58Z Frictional properties of multielement coatings (TiZrHfYNbTa)N Фрикционные свойства многоэлементных покрытий (TiZrHfVNbTa)N Фрикційні властивості багатоелементних покриттів (TiZrHfVNbTa)N Novikov, V.Ju. Stolbovoy, V.A. Beresnev, V.M. Sobol’, O.V. Nyemchenko, U.S. Физика радиационных и ионно-плазменных технологий The influence of pressure of nitrogen atmosphere on the structural and phase state and properties of vacuum-arc nitride coatings Ti-Zr-Hf-V-Nb-Ta has been studied. The multi-element nitride coatings deposited in nitrogen, are single-phase with a cubic face-centered cubic lattice (structural type NaCl) excluding the dropping component. The maximum hardness (42.2 GPa) is achieved for the nitride coatings deposited by vacuum arc evaporation (Ti, Zr, Hf, V, Nb, Ta) of the alloy at the pressure of nitrogen of 0.3 Pa. The tribotechnical characteristics have been studied during high temperature tests. It was found that wear resistance of the coatings is higher at T = 500 °C and T = 700 °C due to formation of oxide tribofilms on the surface, which act as a solid lubricant during testing. Проведено исследование влияния давления атмосферы азота на структурно-фазовое состояние и свойства вакуумно-дуговых нитридных покрытий системы Ti-Zr-Hf-V-Nb-Ta. Без учета капельной составляющей, многоэлементные нитридные покрытия, осажденные в азоте, являются однофазными с кубической ГЦК-решеткой (структурный тип NaCl). Наибольшая твердость (42,2 ГПа) достигнута в нитридных покрытиях, осажденных вакуумно-дуговым испарением (Ti, Zr, Hf, V, Nb, Ta) сплава при давлении азота 0,3 Па. Изучены триботехнические характеристики при высокотемпературных испытаниях. Установлено, что при Т = 500 и 700 ºС износостойкость покрытий выше за счет образования окисных трибопленок на поверхности, действующих в качестве твердой смазки в процессе испытаний. Проведено дослідження впливу тиску атмосфери азоту на структурно-фазовий стан і властивості вакуумно-дугових нітридних покриттів системи Ti-Zr-Hf-V-Nb-Ta. Без урахування крапельної складової, багатоелементні нітрідні покриття, осаджені в атмосфері азоту, є однофазними, з кубічною ГЦК-решіткою (структурний тип NaCl). Найбільшої твердості (42,2 ГПа) досягнуто у нітридних покриттях, осаджених вакуумно-дуговим випаровуванням (Ti, Zr, Hf, V, Nb, Ta) сплаву при тиску азоту 0,3 Па. Вивчено триботехнічні характеристики при високотемпературних випробуваннях. Встановлено, що при Т = 500 і 700 ºС зносостійкість покриттів вище за рахунок утворення окисних трібоплівок на поверхні, що діють в якості твердого змащувача в процесі випробувань. The study has been conducted in CCU, agreement No.14.594.21.0010 and the unique identifier for the works RFMEFI62114X0005 (under the support of the Ministry of Education) The work was carried out as a part of complex statefunded scientific research works 0113U001079 and 0112U006974, funded by the Ministry of Education and Science of Ukraine. 2015 Article Frictional properties of multielement coatings (TiZrHfYNbTa)N / U.S. Nyemchenko, V.Ju. Novikov, V.A. Stolbovoy, V.M. Beresnev, O.V. Sobol’ // Вопросы атомной науки и техники. — 2015. — № 2. — С. 139-144. — Бібліогр.: 15 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/82455 669.295.539.121 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий |
| spellingShingle |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий Novikov, V.Ju. Stolbovoy, V.A. Beresnev, V.M. Sobol’, O.V. Nyemchenko, U.S. Frictional properties of multielement coatings (TiZrHfYNbTa)N Вопросы атомной науки и техники |
| description |
The influence of pressure of nitrogen atmosphere on the structural and phase state and properties of vacuum-arc nitride coatings Ti-Zr-Hf-V-Nb-Ta has been studied. The multi-element nitride coatings deposited in nitrogen, are single-phase with a cubic face-centered cubic lattice (structural type NaCl) excluding the dropping component. The maximum hardness (42.2 GPa) is achieved for the nitride coatings deposited by vacuum arc evaporation (Ti, Zr, Hf, V, Nb, Ta) of the alloy at the pressure of nitrogen of 0.3 Pa. The tribotechnical characteristics have been studied during high temperature tests. It was found that wear resistance of the coatings is higher at T = 500 °C and T = 700 °C due to formation of oxide tribofilms on the surface, which act as a solid lubricant during testing. |
| format |
Article |
| author |
Novikov, V.Ju. Stolbovoy, V.A. Beresnev, V.M. Sobol’, O.V. Nyemchenko, U.S. |
| author_facet |
Novikov, V.Ju. Stolbovoy, V.A. Beresnev, V.M. Sobol’, O.V. Nyemchenko, U.S. |
| author_sort |
Novikov, V.Ju. |
| title |
Frictional properties of multielement coatings (TiZrHfYNbTa)N |
| title_short |
Frictional properties of multielement coatings (TiZrHfYNbTa)N |
| title_full |
Frictional properties of multielement coatings (TiZrHfYNbTa)N |
| title_fullStr |
Frictional properties of multielement coatings (TiZrHfYNbTa)N |
| title_full_unstemmed |
Frictional properties of multielement coatings (TiZrHfYNbTa)N |
| title_sort |
frictional properties of multielement coatings (tizrhfynbta)n |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2015 |
| topic_facet |
Физика радиационных и ионно-плазменных технологий |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82455 |
| citation_txt |
Frictional properties of multielement coatings (TiZrHfYNbTa)N / U.S. Nyemchenko, V.Ju. Novikov, V.A. Stolbovoy, V.M. Beresnev, O.V. Sobol’ // Вопросы атомной науки и техники. — 2015. — № 2. — С. 139-144. — Бібліогр.: 15 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT novikovvju frictionalpropertiesofmultielementcoatingstizrhfynbtan AT stolbovoyva frictionalpropertiesofmultielementcoatingstizrhfynbtan AT beresnevvm frictionalpropertiesofmultielementcoatingstizrhfynbtan AT sobolov frictionalpropertiesofmultielementcoatingstizrhfynbtan AT nyemchenkous frictionalpropertiesofmultielementcoatingstizrhfynbtan AT novikovvju frikcionnyesvoistvamnogoélementnyhpokrytiitizrhfvnbtan AT stolbovoyva frikcionnyesvoistvamnogoélementnyhpokrytiitizrhfvnbtan AT beresnevvm frikcionnyesvoistvamnogoélementnyhpokrytiitizrhfvnbtan AT sobolov frikcionnyesvoistvamnogoélementnyhpokrytiitizrhfvnbtan AT nyemchenkous frikcionnyesvoistvamnogoélementnyhpokrytiitizrhfvnbtan AT novikovvju frikcíinívlastivostíbagatoelementnihpokrittívtizrhfvnbtan AT stolbovoyva frikcíinívlastivostíbagatoelementnihpokrittívtizrhfvnbtan AT beresnevvm frikcíinívlastivostíbagatoelementnihpokrittívtizrhfvnbtan AT sobolov frikcíinívlastivostíbagatoelementnihpokrittívtizrhfvnbtan AT nyemchenkous frikcíinívlastivostíbagatoelementnihpokrittívtizrhfvnbtan |
| first_indexed |
2025-12-02T06:37:27Z |
| last_indexed |
2025-12-02T06:37:27Z |
| _version_ |
1850377447315341312 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №2(96) 139
UDC 669.295.539.121
FRICTIONAL PROPERTIES OF MULTIELEMENT COATINGS
(TiZrHfVNbTa)N
U.S. Nyemchenko
1
, V.Ju. Novikov
2
, V.A. Stolbovoy
3
, V.M. Beresnev
1,4
, O.V. Sobol’
5
1
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: Ululkin@gmail.com;
2
Belgorod National Research University, Belgorod, Russia;
3
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
4
Sumy State University, Sumy, Ukraine;
5
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
The influence of pressure of nitrogen atmosphere on the structural and phase state and properties of vacuum-arc
nitride coatings Ti-Zr-Hf-V-Nb-Ta has been studied. The multi-element nitride coatings deposited in nitrogen, are
single-phase with a cubic face-centered cubic lattice (structural type NaCl) excluding the dropping component. The
maximum hardness (42.2 GPa) is achieved for the nitride coatings deposited by vacuum arc evaporation (Ti, Zr, Hf,
V, Nb, Ta) of the alloy at the pressure of nitrogen of 0.3 Pa. The tribotechnical characteristics have been studied
during high temperature tests. It was found that wear resistance of the coatings is higher at T = 500 °C and
T = 700 °C due to formation of oxide tribofilms on the surface, which act as a solid lubricant during testing.
INTRODUCTION
The surface layer of structural materials is exposed to
heavy mechanical, thermal and chemical resistance
during the operation. The loss of performance of
constructional materials in most cases is due to the
damage caused to the surface, which is a result of wear,
erosion, corrosion, and so on. N. One of the most
effective methods ensuring the obtaining of
predetermined complex of characteristics for surface
hardness of material is hardening method, which allows
to form a protective coating on the surface [1, 2]. By
choosing a suitable material for the coatings and
technological deposition regimes, one can vary basic
surface properties of machine parts, such as hardness,
friction coefficient, thermal conductivity, wear resistance
and corrosion resistance within a wide range, while
maintaining excellent properties of the substrate material.
Published data show that the coatings based on
nitrides of various refractory materials are stable coatings
with high physical and mechanical properties [3].
Recently, however, with an increase of specific loads,
and, in some cases, poor lubrication conditions,
increased requirements for reliability and durability of
machine parts, these coatings are no longer justified.
Increased wear and durability of friction joints can be
achieved by spraying multi-element materials and by
creating multicomponent carbide or nitride coatings on
their basis, which provide increased wear resistance,
hardness, heat resistance, etc. [4, 5].
Modern perspective coatings to use in tool making
industry, which protect the cutting tool working at high
speeds (temperatures), as well as the coatings to use in
heavy loaded friction units are multi-component systems
based on nitrides of refractory metals - titanium nitride,
hafnium, zirconium, and niobium [6, 7].
In connection with this, we investigated the
tribological characteristics of multicomponent-
component nitride coatings, obtained by means of
vacuum-arc evaporation method of the material based on
(TiZrHfVNbTa).
EXPERIMENTAL PART
The coatings were deposited by means of vacuum-arc
method on the “Bulat-6” installation. The cathode of the
desired composition was produced before the deposition
by means of vacuum-arc melting of a multicomponent
mixture of powders of pure metals. Non-diffusing
tungsten cathode was used for melting. Crystallized ingot
was removed from the crystallizer, turned over and
placed back in the crystallizer. The flux was re-melted;
the procedure was repeated 7 times to obtain the most
homogeneous structure.
The ingot was in a shape of cylinder (diameter
~ 45 mm, height ~ 30 mm), which was removed from the
crystallizer and soldered to the titanium cathode with a
solid solder. Thus, the cathodes (targets) based on
Ti+Zr+Nb+Hf+V+Ta system were fabricated. These
targets were used to obtain the nitride coatings. The
reactive gas was nitrogen. During deposition in order to
improve the adhesion, a constant negative potential
Ucp = -150 V was applied, and in some cases in order to
increase the average energy of deposited particles
without significant heating, pulsed negative potential
Upp = -800 and -1200 V was applied in pulsed mode with
a duration of 10 μs and frequency ν = 7 kHz. The
temperature during deposition did not exceed 450 °C.
The deposition parameters are given in Table 1.
The substrates for the coatings deposition were the
samples withthe size 15x15x2.5 mm made of 12X18H9T
steel (Ra = 0.09 μm). The time of deposition was
1.5 hours, the thickness of the coating ~ 8.0 μm.
The surface morphology, fractograms of the
fracture, friction tracks were investigated on a scanning
electron microscope FEI Nova NanoSEM 450.
The study of the elemental composition of the
coatings was carried out by analyzing the spectra of
characteristic X-rays generated by an electron beam in a
scanning electron microscope. The spectra were recorded
by means of x-ray energy dispersive spectrometer of
PEGASUS system by EDAX, installed in the
microscope.
140 ISSN 1562-6016. ВАНТ. 2015. №2(96)
Table 1
Physical and technological parameters of coatings deposition
The study of the elemental composition of the
coatings was carried out by analyzing the spectra of
characteristic X-rays generated by an electron beam in a
scanning electron microscope. The spectra were recorded
by means of x-ray energy dispersive spectrometer of
PEGASUS system by EDAX, installed in the
microscope.
Investigation of phase-structural state was carried out
on a DRON-3M in Cu-Kα radiation. To monochromatise
the detected radiation, the graphite monochromator,
which is set in the secondary beam (in front of the
detector) was used. The study of the phase composition,
structure (texture, substructure) were carried out using
traditional methods – by means of X-ray diffraction
analysis of the position, intensity and shape of the
profiles of the diffraction reflexes. Substructural
characteristics were determined by means of
approximation method [8].
Tribological tests were carried out on air by “ball-
disk” scheme. High temperature “Tribometer”, CSM
Instruments was used as a friction machine. The coatings
were deposited onto the polished surface of the
cylindrical samples (Ra = 0.088 μm) made of steel 45
(diameter 42 mm, height 5 mm). The thickness of the
coating was ~ 4.5...5.0 μm. The ball with the diameter of
6.0 mm, made of sintered certified material – Al2O3 –
was used as a counterbody. The load was 6.0 N, the
sliding speed was 10 cm/s. The tests conform to the
international standards ASTM G99-959, DIN50324 and
ISO 20808. The roughness and the volume of the
removed material of the coating was determined by the
cross-section of the wear track on the surface of the
sample using automated precession contact profilometer
of the model Surtronic 25. The hardness of the coatings
was measured using a hardness-testing machine DM 8
using micro-Vickers method, at a load of 0.2 N.
RESULTS AND DISCUSSION
Investigation of surface topography using a scanning
electron microscope shows the presence of micron size
droplets. The surface roughness varies from 1.26 to
1.62 m depending on the deposition parameters (see
Table 1).
The elemental analysis data are shown in Table 2. It
can be seen that for all the operation modes used in a
work there is a good correspondence between the
elemental composition of the coating and the evaporated
target (without taking nitrogen atoms into account).
The analysis of the diffraction spectra indicates, that for
the coatings, obtained at a low pressure of 7·10
-4
Torr
(Series No. 1) as well as for the coatings, obtained at
relatively high pressure of nitrogen atmosphere
3·10
-3
Torr (Series No. 4), despite of the large number
of constituent metal elements and different inclinations
of the constituent elements to form the nitrides, the
single-phase state on basis of the fcc metal lattice is
formed. The lattice in the case of nitrides has a
structural type of NaCl and a low content (up to
7 vol.%) component with a bcc lattice, apparently
associated with the presence of droplet phase in the
coating.It should be noted, that the formation of the fcc
lattice by nitride coatingsof multielement systems is
confirmed by many sources of literature [9–11]. This
circumstance points to the fact that the formation of a
single-phase solid solution of the nitride phase is more
inherent for such material, rather than separate nitrides,
coexisting with each other.
Table 2
Elemental composition of the coatings, at.%
Series
No.
N Zr Nb Ti V Hf Ta
1 55.48 8.33 7.73 7.85 6.12 9.33 5.16
2 54.85 8.52 8.37 7.67 6.1 9.29 5.2
3 52.33 8.13 8.48 7.62 6.71 9.48 5.25
4 52.75 8.59 8.55 8.96 6.67 9.47 5.01
5 52.82 8.61 8.39 9.2 6.74 9.34 4.9
Fig. 1. The area of x-ray spectra of the coated samples
(TiZrHfVNbTa)N; 1 – Series No. 4; 2 – Series No. 1
Series
No. Coatings Iarc, A Ifoc. cat., А Ucp, V Upp, V ν, kHz Р, Torr
НV0.2
GPa
Ra,
μm
1 (TiZrHfVNbTa)N 110 0.4 -150 − − 3·10
-3
40.1 1.26
2 (TiZrHfVNbTa)N 110 0.4 -150 -800 7 3×10
-3
42.2 1.32
3 (TiZrHfVNbTa)N 110 0.4 -150 -800 7 7×10
-4
36.3 1.62
4 (TiZrHfVNbTa)N 110 0.4 -150 − − 7×10
-4
33.8 1.42
5 (TiZrHfVNbTa)N 110 0.4 -150 -1200 7 7×10
-4
38.3 1.55
ISSN 1562-6016. ВАНТ. 2015. №2(96) 141
The coatings, produced at a low pressure of
7·10
-4
Torr, are characterized by almost untextured state
(spectrum 1 in Fig. 1). The increase of the pressure of the
nitrogen atmosphere up to 3·10
-3
Torr during the
deposition leads to appearance of the state with the axial
texture axes [111] and [110]. The investigation of the
substructural characteristics by means of approximation
method has shown that the bombardment of the growing
coating by charged accelerated particles of the target at
low pressureoccurs in almost collision-free mode (in the
electrode gap), which leads to the development of high
micro deformation of 1.09% at small and average
crystallite size of about 10 nm.
The results of hardness measurement of the obtained
coatings are given in Table 1. The hardness of the
coatings according to the physical parameters of
deposition lies in the range of 36 to 42.2 GPa. It should
be noted, that the maximum values of hardness (40.1 and
42.2 GPa) are inherent to the coatings of Series No. 1
and Series No. 2, which are characterized by the
strongest growth texture (111). It should be also noted,
that the plane (111) is the most close-packed as for the
fcc crystal lattice.
The image of friction tracks, as well as the results of
tribotechnical tests are shown in Fig. 2 and in Table 3.
Table 3
Tribotechnical characteristics of the systems
«coating (TiZrHfVNbTa)N Al2O3»
Tables 4 and 5 show the results of energy-dispersive
analysis of the elemental composition of the wear tracks
and the wear products, respectively.
All the coated samples had a friction coefficient,
which was higher than 0.9. Such high values can be
explained by the high roughness (see Table 1) and the
presence of the droplet fraction on the surface and in the
coating (see Fig. 2), which are a consequence of the
process of continuous-flow vacuum-arc deposition.
However, the coatings perform good results in abrasion
resistance. The images of the wear tracks (see Fig. 2),
obtained by means of SEM, and the results of energy-
dispersive analysis (Table 4) show that the coatingswere
not erased to the substrate. During the test, there was no
chipping, cracking or delamination of the coatings, they
have good adhesion. During the abrasive wear, the
material of the coatings was plastically deformed; the
observed wear pattern is typical for soft metals. In order
to obtain the information on the effect of temperature on
the tribotechnical characteristics, the high-temperature
tests were conducted. The sample of the coating obtained
at P = 3·10
-3
Torr (Series No. 2) with the hardness of
H = 42.2 GPa was taken as a sample. The results of
tribology tests at T = 500 and 700 °C are shown in
Table 6.
Fig. 3 shows a photograph of the area of friction
tracks for the coating of Series No. 2, their wear products
and their elemental composition at a temperature of
500 °C test.
The oxygenation of the surface nanolayer of the
coating increases (Table 7), and the presence of large
amounts of oxygen in the products of wear, indicate the
presence of ZrO2, TiO2, etc. oxides.
a
b
Fig. 2. Image of wear tracks of the coatings
(TiZrNbHfVTa)N, obtained by means of SEM:
а – Series 2; b – Series 4
Using the data of the energy dispersion analysis
(Table 7), the identification of the results of X-ray
structural analysis has been carried out. The diffraction
patterns of the coatings after the tests revealed reflexes at
small angles, which is associated with the formation of
TiO2 oxides (JCPDS 01-0562), ZrO2 (JCPDS42-1164)
and the oxide type MeTiO4, where “Me” corresponds to
the content of Zr and Hf.
According to the structural type, this oxide is similar
to the isostructural ZrTiO4 (JCPDS 07-0290) and HfTiO4
(JCPDS 14-0103), as well as to the appearance of
reflexes from NbO2 (JCPDS 17-0212).
Series
No.
Coatings
Friction
coefficient, μ
Wear,
mm
3
/N/m
Initial While
testing
Counter-
body
Coating
Initial
Steel 45,
polished.
0.318 0.498 1.01·10-6 5.12·10-5
1 (TiZrHfVNbTa)N 0.363 1.003 3.29·10-5 5.44·10-5
2 (TiZrHfVNbTa)N 0.683 1.063 3.84·10-6 4.1·10-5
3 (TiZrHfVNbTa)N 0.500 0.878 2.03·10-5 5.94·10-5
4 (TiZrHfVNbTa)N 0.607 0.942 9.93·10-6 2.12·10-5
5 TiZrHfVNbTa)N 0.409 0.974 1.34·10-5 5.06·10-5
142 ISSN 1562-6016. ВАНТ. 2015. №2(96)
Table 4
Elemental composition of wear tracks
Table 5
Elemental composition of the wear product
a b
Fig. 3 Image of wear tracks of the coatings and Al2O3 counterbodies at high temperature tests for the coatings of
Series No. 2: а – 700
о
С; b – 500
о
С
Table 6
Tribological characteristics of the systems «coating (TiZrHfVNbTa)N Al2O3»
under the testing temperatures 20, 500 and 700
о
С
Testing temperature
Friction coefficient, μ Wear intensity, mm
3
/N/m
Initial During the testing Counterbody Coating
Т = 20 ºС 0.683 1.063 3.84·10
-6
4.1·10
-5
Т = 500 ºС 1.15 0.827 7.36·10
-6
2.12·10
-5
Т = 700 ºС 0.725 0.585 2.47·10
-5
2.71·10
-5
Table 7
Elemental composition of the surface of the coatings of Series No. 2 and their wear products at Т= 500
о
С
Elements
N,
at. %
O,
at.%
Al,
at.%
Hf,
at.%
Ta,
at.%
Zr,
at.%
Nb,
at.%
Ti,
at.%
Fe,
at.%
Coatings 43.38 41.15 3.48 1.74 2.12 1.89 1.47 1.58 3.09
Wear products – 49.96 6.46 5.26 5.32 6.07 4.82 4.06 21.04
It is known that the phase change in the active layers
occurs respectively to the giventemperature and power
conditions, and depends on the activity of diffusion
processes.
As a result, the redistribution the of elements in the
structural components, the dissolution of fine inclusions,
the smoothing of heterogeneity degree over the depth of
the active layer and the creation of the so-called layers,
saturatedby chemical elements from the environment on
the surface of the friction surface is possible [12–14].
It should be kept in mind, that the beneficial effect of
the tribochemical processes on anti-friction properties
Series No.
Elemental composition, at.%
N Zr Nb Ti V Hf Ta О Al
1 51.48 8.48 8.17 8.14 6.64 9.39 5.2 2.49 −
2 52.2 8.82 8.46 8.21 6.47 9.29 5.23 1.34 −
3 45.8 8.17 7.81 10.25 7.2 8.38 4.66 6.65 1.09
4 50.63 8.73 8.18 10.25 7.03 8.67 4.54 6.65 −
5 41.12 10.79 10.91 11.25 8.59 10.82 6.04 − −
Series No.
Elemental composition, at.%
N Zr Nb Ti V Hf Ta Fe О Al
1 27.38 3.76 3.65 3.57 2.93 3.4 2.91 0.47 48.96 2.98
2 22.79 3.84 3.81 3.21 2.56 3.35 2.45 0.33 53.99 3.66
3 22.87 2.79 2.62 3.42 2.49 2.32 2.15 0.32 48.48 12.54
4 19.23 3.23 3.17 3.41 2.39 2.74 2.3 0.45 53.74 9.34
5 21.92 3.37 3.46 3.45 2.66 2.95 2.62 0.58 50.85 8.14
ISSN 1562-6016. ВАНТ. 2015. №2(96) 143
takes place only up to a certain level of the friction
characteristics. Wear cannot be associated with any of
the properties of the oxide film. It is necessary to take the
complex of characteristics, such as strength, brittleness,
hardness, bonding strength of the oxide film with the
surface of the basic metal into account.
Unlike the friction at room temperature, high
temperature friction provides more intense oxidation and
subsequent reduction of the damaged oxide films.
Tribooxidation of the coatings (TiZrHfVNbTa)N results
in structural adjustment of the surface layers to the
difficult conditions of high temperature friction [15].
Oxygen-containing compounds based on a metal, which
are formed in the friction process may act as a shield,
which protects the surface from wear.
The study has been conducted in CCU, agreement
No.14.594.21.0010 and the unique identifier for the
works RFMEFI62114X0005 (under the support of the
Ministry of Education)
The work was carried out as a part of complex state-
funded scientific research works 0113U001079 and
0112U006974, funded by the Ministry of Education and
Science of Ukraine.
SUMMARY
1. The nitride coating based on the multi-element
material Ti-Zr-Hf-V-Nb-Ta was obtained by means of
vacuum-arc deposition method. It is shown that the
formation of single-phase solid solution with fcc lattice
is inherent to such materials.
2. The coatings produced at a low pressure of
nitrogen (7·10
-4
Torr) are characterized by almost
untextured state. Increasing the pressure of the nitrogen
atmosphere during the deposition of up to 3×10
-3
Torr
leads to the appearance of bitextural state with the axial
texture axes [111] and [110].
3. The maximum hardness values (40.1 and
42.2 GPa) are inherent to the coatings, obtained at the
pressure of nitrogen 3·10
-3
Torr, which are characterized
by the strongest growth of the texture (111).
4. It was found out, that the coatings, based on
system (TiZrHfVNbTa)N have improved wear resistance
at tribological tests when tested in air at T = 500 and
700 °C; this is due to the formation of surface stable
oxides based on transition metals forming high entropy
alloy, which act like a solid tribolubricant at high
temperatures. The intensity of wear of the coatings is 2
times lower than in the case of tests at room temperature.
REFERENCES
1. Е.N. Reshetnyak, V.E. Strel’nitskij. Synthesis of
hardeningnanostructural coatings // VANT. Series
“Physics of radiation effect and radiation materials
science”. 2008, N 2(92), p. 119-130.
2. A.D. Pogrebnjak, V.M. Beresnev. Hard
nanocomposite coatings, their structure and properties.
Ch. 6. Books «Nanocomposites new trends and
developments». Croatia: NTECH, 2012, p. 123-160.
3. N.А. Azarenkov, О.V. Sobol, V.М. Beresnev,
А.D. Pogrebnyak, D.А. Kolesnikov, P.V. Turbin,
I.M. Torianyk Vacuum-plasma coatings based on the
multielement nitrides // Metal physics and modern
Technologies. 2013, v. 35, N 8, p. 1061-1084.
4. A.D. Pogrebnjak, A.V. Pshyk, V.M. Beresnev,
B.R. Zhollybekov. Protection of specimens against
friction and wear using titanium-based
multicomponent nanocomposite coatings: A review //
J. of Friction and Wear. 2014, v. 35, N 1, p. 55-66.
5. A.D. Pogrebnjak, А.P. Shpak, N.А. Azarenkov, et
al. Structures and properties of hard and superhard
nanocomposite coatings // UFN. 2009, v. 179, N 1, p. 35-
64.
6. A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bag-
dasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias,
P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev,
O.V. Sobol. Microstructure, physical and chemical
properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings
under different deposition conditions // Mat. Chem. Phys.
2014, v. 147, p. 1079-1091.
7. A.D. Pogrebnjak, N.A. Azarenkov, V.M. Beres-
nev, S.V. Litovchenko. Influence of deposition
parameters on the structure and properties of nitride
coatings. Ch. 11 // Books «Manufacturing
Nanostructures». Manchester, United Kingdom: One
Central Press, 2014, p. 294-320.
8. L.S. Palatnik, M.Ya. Fuksс, V.М. Kosevich.
Mechanism of formation and substructure of condensed
films. M.: “Science”, 1972, 320p.
9. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao,
K.A. Dahmen, P.K. Liaw, Z.P. Lu. Microstructures and
properties of high-entropy alloys // Progress in Materials
Science. 2014, v. 61, p. 1-93.
10. B.S. Murty, J.W. Yeh, S. Ranganathan. High-
Entropy Alloys. Amsterdam, Boston: Elsevier, 2014,
169 p.
11. A.D. Pogrebnjak, A.A. Bagdasaryan,
I.V. Yakushchenko, V.M. Beresnev. The structure and
properties of high-entropy alloys and nitride coatings
based on them // Russ. Chem. Rev. 2014, v. 83(11),
p. 1027-1061.
12. G.K. Dosbaeva, S.C. Veldhuis, K. Yamamoto,
D.S. Wilkinson, B.D. Beake, N.J enkins, A. Elfizy,
G.S. Fox-Rabinovich. Oxide scales formation in
nanocrystalline TiAlCrSiYN PVD coatings at elevated
temperature // Int. J. Refract. Met. Hard Mater. 2010,
v. 28, N 1, p. 133-141.
13. R. Franz, C. Mitterer. Vanadium containing
self-adaptive low-friction hardcoatings for high-
temperature applications: A review // Surf. Coat.
Technol. 2013, v. 228, N 7, p. 1-13.
14. H. Kato, K. Komai. Tribofilm formation and
mild wear by tribo-sintering ofnanometer-sized oxide
particles on rubbing steel surfaces // Wear. 2007, v. 262,
N 1-2, p. 36-41.
15. S.A. Klimenko, I.A. Podchernjaeva, V.M. Bere-
snev, V.M. Panashenko, S.An. Klimenko,
M.Yu. Kopeikina. AlN-(TiCr)B2 ion-plasma coating
for cutting tools of cBN-based polycrystalline
superhard material // Journal of Superhard Materials.
2014, v. 36, N 3, p. 208-216.
Статья поступила в редакцию 15.01.2015 г.
http://link.springer.com/search?facet-author=%22A.+D.+Pogrebnjak%22
http://link.springer.com/search?facet-author=%22A.+V.+Pshyk%22
http://link.springer.com/search?facet-author=%22V.+M.+Beresnev%22
http://link.springer.com/search?facet-author=%22B.+R.+Zhollybekov%22
http://link.springer.com/search?facet-author=%22B.+R.+Zhollybekov%22
http://link.springer.com/search?facet-author=%22S.+A.+Klimenko%22
http://link.springer.com/search?facet-author=%22I.+A.+Podchernjaeva%22
http://link.springer.com/search?facet-author=%22V.+M.+Panashenko%22
http://link.springer.com/search?facet-author=%22S.+An.+Klimenko%22
http://link.springer.com/search?facet-author=%22M.+Yu.+Kopeikina%22
http://link.springer.com/journal/11961
http://link.springer.com/journal/11961/36/3/page/1
144 ISSN 1562-6016. ВАНТ. 2015. №2(96)
ФРИКЦИОННЫЕ СВОЙСТВА МНОГОЭЛЕМЕНТНЫХ ПОКРЫТИЙ (TiZrHfVNbTa)N
У.С. Немченко, В.Ю. Новиков, В.А. Столбовой, В.М. Береснев, О.В. Соболь
Проведено исследование влияния давления атмосферы азота на структурно-фазовое состояние и
свойства вакуумно-дуговых нитридных покрытий системы Ti-Zr-Hf-V-Nb-Ta. Без учета капельной
составляющей, многоэлементные нитридные покрытия, осажденные в азоте, являются однофазными с
кубической ГЦК-решеткой (структурный тип NaCl). Наибольшая твердость (42,2 ГПа) достигнута в
нитридных покрытиях, осажденных вакуумно-дуговым испарением (Ti, Zr, Hf, V, Nb, Ta) сплава при
давлении азота 0,3 Па. Изучены триботехнические характеристики при высокотемпературных испытаниях.
Установлено, что при Т = 500 и 700 ºС износостойкость покрытий выше за счет образования окисных
трибопленок на поверхности, действующих в качестве твердой смазки в процессе испытаний.
ФРИКЦІЙНІ ВЛАСТИВОСТІ БАГАТОЕЛЕМЕНТНИХ ПОКРИТТІВ (TiZrHfVNbTa)N
У.С. Нємченко, В.Ю. Новіков, В.О. Столбовой, В.М. Береснєв, О.В. Соболь
Проведено дослідження впливу тиску атмосфери азоту на структурно-фазовий стан і властивості
вакуумно-дугових нітридних покриттів системи Ti-Zr-Hf-V-Nb-Ta. Без урахування крапельної складової,
багатоелементні нітрідні покриття, осаджені в атмосфері азоту, є однофазними, з кубічною ГЦК-решіткою
(структурний тип NaCl). Найбільшої твердості (42,2 ГПа) досягнуто у нітридних покриттях, осаджених
вакуумно-дуговим випаровуванням (Ti, Zr, Hf, V, Nb, Ta) сплаву при тиску азоту 0,3 Па. Вивчено
триботехнічні характеристики при високотемпературних випробуваннях. Встановлено, що при Т = 500 і
700 ºС зносостійкість покриттів вище за рахунок утворення окисних трібоплівок на поверхні, що діють в
якості твердого змащувача в процесі випробувань.
|