Learning Maximal Margin Markov Networks via Tractable Convex Optimization

Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения. It is shown that the learning of a general Markov network c...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Управляющие системы и машины
Дата:2011
Автори: Franc, V., Laskov, P.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2011
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/82921
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Learning Maximal Margin Markov Networks via Tractable Convex Optimization / V. Franc, P. Laskov // Управляющие системы и машины. — 2011. — № 2. — С. 25-34. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения. It is shown that the learning of a general Markov network can be represented as a convex optimization problem. The key idea of the method is to use a linear programming relaxation of the (max,+)-problem directly in the formulation of the learning problem. Показано, що навчання марківської мережі загального вигляду може бути подано у вигляді задачі опуклої оптимізації. Основна ідея методу полягає у використанні LP-релаксації (max,+)-задачі безпосередньо при формулюванні задачі навчання.
ISSN:0130-5395