Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними

Описано распространение метода конечных элементов решения нестационарной задачи теплопроводности с двумя пространственными переменными с использованием формул сплайн-интерполяции, построенных на основе сплайн-интерлинации функций для областей, ограниченных дугами известных кривых. Рассмотрен пример...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Управляющие системы и машины
Дата:2012
Автори: Литвин, О.М., Лобанова, Л.С., Залужна, Г.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/83078
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними / О.М. Литвин, Л.С. Лобанова, Г.В. Залужна // Управляющие системы и машины. — 2012. — № 4. — С. 11-19, 24. — Бібліогр.: 7 назв. — укр., рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-83078
record_format dspace
spelling Литвин, О.М.
Лобанова, Л.С.
Залужна, Г.В.
2015-06-14T10:57:37Z
2015-06-14T10:57:37Z
2012
Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними / О.М. Литвин, Л.С. Лобанова, Г.В. Залужна // Управляющие системы и машины. — 2012. — № 4. — С. 11-19, 24. — Бібліогр.: 7 назв. — укр., рос.
0130-5395
https://nasplib.isofts.kiev.ua/handle/123456789/83078
519.6
Описано распространение метода конечных элементов решения нестационарной задачи теплопроводности с двумя пространственными переменными с использованием формул сплайн-интерполяции, построенных на основе сплайн-интерлинации функций для областей, ограниченных дугами известных кривых. Рассмотрен пример области, представляющей собой равностороннюю трапецию.
The distribution of the method of finite elements for the decision of non-stationary task of heat-conducting with two spatial variables with the use of formulas of spline interpolation, which are built on the basis of spline interlineations of functions in case of curves arcs limited areas. The example of the area, which is isosceles trapezoid, is considered.
Описано розповсюдження методу скінченних елементів розв’язання нестаціонарної задачі теплопровідності з двома просторовими змінними з використанням формул сплайн-інтерполяції, побудованих на основі сплайн-інтерлінації функцій для областей, обмежених дугами відомих кривих. Розглянуто приклад області, що є рівнобічною трапецією.
uk
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
Управляющие системы и машины
Новые методы в информатике
Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
A Decision of Non-Stationary Task of Heat-Conducting with Two Spatial Variables by Functions Interlineations
Численная реализация метода линейных интегро-дифференциальных уравнений для уравнения нестационарной теплопроводности с двумя пространственными переменными
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
spellingShingle Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
Литвин, О.М.
Лобанова, Л.С.
Залужна, Г.В.
Новые методы в информатике
title_short Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
title_full Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
title_fullStr Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
title_full_unstemmed Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
title_sort чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними
author Литвин, О.М.
Лобанова, Л.С.
Залужна, Г.В.
author_facet Литвин, О.М.
Лобанова, Л.С.
Залужна, Г.В.
topic Новые методы в информатике
topic_facet Новые методы в информатике
publishDate 2012
language Ukrainian
container_title Управляющие системы и машины
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
format Article
title_alt A Decision of Non-Stationary Task of Heat-Conducting with Two Spatial Variables by Functions Interlineations
Численная реализация метода линейных интегро-дифференциальных уравнений для уравнения нестационарной теплопроводности с двумя пространственными переменными
description Описано распространение метода конечных элементов решения нестационарной задачи теплопроводности с двумя пространственными переменными с использованием формул сплайн-интерполяции, построенных на основе сплайн-интерлинации функций для областей, ограниченных дугами известных кривых. Рассмотрен пример области, представляющей собой равностороннюю трапецию. The distribution of the method of finite elements for the decision of non-stationary task of heat-conducting with two spatial variables with the use of formulas of spline interpolation, which are built on the basis of spline interlineations of functions in case of curves arcs limited areas. The example of the area, which is isosceles trapezoid, is considered. Описано розповсюдження методу скінченних елементів розв’язання нестаціонарної задачі теплопровідності з двома просторовими змінними з використанням формул сплайн-інтерполяції, побудованих на основі сплайн-інтерлінації функцій для областей, обмежених дугами відомих кривих. Розглянуто приклад області, що є рівнобічною трапецією.
issn 0130-5395
url https://nasplib.isofts.kiev.ua/handle/123456789/83078
citation_txt Чисельна реалізація методу лінійних інтегро-диференціальних рівнянь для рівняння нестаціонарної теплопровідності з двома просторовими змінними / О.М. Литвин, Л.С. Лобанова, Г.В. Залужна // Управляющие системы и машины. — 2012. — № 4. — С. 11-19, 24. — Бібліогр.: 7 назв. — укр., рос.
work_keys_str_mv AT litvinom čiselʹnarealízacíâmetodulíníinihíntegrodiferencíalʹnihrívnânʹdlârívnânnânestacíonarnoíteploprovídnostízdvomaprostorovimizmínnimi
AT lobanovals čiselʹnarealízacíâmetodulíníinihíntegrodiferencíalʹnihrívnânʹdlârívnânnânestacíonarnoíteploprovídnostízdvomaprostorovimizmínnimi
AT zalužnagv čiselʹnarealízacíâmetodulíníinihíntegrodiferencíalʹnihrívnânʹdlârívnânnânestacíonarnoíteploprovídnostízdvomaprostorovimizmínnimi
AT litvinom adecisionofnonstationarytaskofheatconductingwithtwospatialvariablesbyfunctionsinterlineations
AT lobanovals adecisionofnonstationarytaskofheatconductingwithtwospatialvariablesbyfunctionsinterlineations
AT zalužnagv adecisionofnonstationarytaskofheatconductingwithtwospatialvariablesbyfunctionsinterlineations
AT litvinom čislennaârealizaciâmetodalineinyhintegrodifferencialʹnyhuravneniidlâuravneniânestacionarnoiteploprovodnostisdvumâprostranstvennymiperemennymi
AT lobanovals čislennaârealizaciâmetodalineinyhintegrodifferencialʹnyhuravneniidlâuravneniânestacionarnoiteploprovodnostisdvumâprostranstvennymiperemennymi
AT zalužnagv čislennaârealizaciâmetodalineinyhintegrodifferencialʹnyhuravneniidlâuravneniânestacionarnoiteploprovodnostisdvumâprostranstvennymiperemennymi
first_indexed 2025-12-07T16:24:27Z
last_indexed 2025-12-07T16:24:27Z
_version_ 1850867363517300736