Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа

Несмотря на то, что обобщенный релаксационный итерационный алгоритм (ОРИА) на сегодня самый быстрый и точный итерационный алгоритм МГУА, для которого доказана сходимость, его аналоги: многорядный упрощенный алгоритм (МУА) и многорядный алгоритм с комбинаторикой и селекцией обобщенных переменных (МАК...

Full description

Saved in:
Bibliographic Details
Published in:Індуктивне моделювання складних систем
Date:2013
Main Author: Кондаршова, Н.В.
Format: Article
Language:Russian
Published: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/83671
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа / Н.В. Кондаршова // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 184-200. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-83671
record_format dspace
spelling Кондаршова, Н.В.
2015-06-21T17:45:21Z
2015-06-21T17:45:21Z
2013
Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа / Н.В. Кондаршова // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 184-200. — Бібліогр.: 9 назв. — рос.
XXXX-0044
https://nasplib.isofts.kiev.ua/handle/123456789/83671
681.513.8
Несмотря на то, что обобщенный релаксационный итерационный алгоритм (ОРИА) на сегодня самый быстрый и точный итерационный алгоритм МГУА, для которого доказана сходимость, его аналоги: многорядный упрощенный алгоритм (МУА) и многорядный алгоритм с комбинаторикой и селекцией обобщенных переменных (МАКСО) также имеют свою «нишу» применимости. В плоскости двух параметров: размера выборки (числа наблюдений) и сложности модели (числа аргументов) показаны области превышения вычислительной сложности (быстродействия) одного алгоритма по отношению к другому. Проведен сравнительный анализ быстродействия нерекуррентного и рекуррентных вариантов ОРИА между собой и каждого из них в сравнении с МУА.
Незважаючи на те, що узагальнений релаксаційний ітераційний алгоритм (УРІА) на сьогодні найшвидший і точний ітераційний алгоритм МГУА, для якого доведена збіжність, його аналоги: багаторядний спрощений алгоритм (БСА) і багаторядний алгоритм з комбінаторикою і селекцією узагальнених змінних (БАКСУ) також мають свою «нішу» застосовності. У площині двох параметрів: розміру вибірки (числа спостережень) і складності моделі (числа аргументів) показані області перевищення обчислювальної складності (швидкодії) одного алгоритму по відношенню до іншого. Проведено порівняльний аналіз швидкодії нерекуррентного та рекурентних варіантів УРІА між собою і кожного з них у порівнянні з БСА.
Despite the fact that the generalized relaxation iterative algorithm (GRIA) for today is most fast and precise iterative algorithm GMDH for which the convergence is proved, its analogues: a multi-layered simplified algorithm (MSA) and multi-layered algorithm with combinatorics and selection of generalized variables (MACSG) also have their "niche" applicability. Areas of exceedance computational complexity (running speed) of an algorithm with respect to another in the plane of two parameters such as sample size (number of observations) and model complexity (number of arguments) are shown. A comparative analysis of the running speed of nonrecurrent and recurrent variants GRIA between themselves and each of them compared to the MSA is provided.
ru
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
Індуктивне моделювання складних систем
Наукові статті
Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
spellingShingle Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
Кондаршова, Н.В.
Наукові статті
title_short Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
title_full Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
title_fullStr Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
title_full_unstemmed Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
title_sort сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа
author Кондаршова, Н.В.
author_facet Кондаршова, Н.В.
topic Наукові статті
topic_facet Наукові статті
publishDate 2013
language Russian
container_title Індуктивне моделювання складних систем
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
format Article
description Несмотря на то, что обобщенный релаксационный итерационный алгоритм (ОРИА) на сегодня самый быстрый и точный итерационный алгоритм МГУА, для которого доказана сходимость, его аналоги: многорядный упрощенный алгоритм (МУА) и многорядный алгоритм с комбинаторикой и селекцией обобщенных переменных (МАКСО) также имеют свою «нишу» применимости. В плоскости двух параметров: размера выборки (числа наблюдений) и сложности модели (числа аргументов) показаны области превышения вычислительной сложности (быстродействия) одного алгоритма по отношению к другому. Проведен сравнительный анализ быстродействия нерекуррентного и рекуррентных вариантов ОРИА между собой и каждого из них в сравнении с МУА. Незважаючи на те, що узагальнений релаксаційний ітераційний алгоритм (УРІА) на сьогодні найшвидший і точний ітераційний алгоритм МГУА, для якого доведена збіжність, його аналоги: багаторядний спрощений алгоритм (БСА) і багаторядний алгоритм з комбінаторикою і селекцією узагальнених змінних (БАКСУ) також мають свою «нішу» застосовності. У площині двох параметрів: розміру вибірки (числа спостережень) і складності моделі (числа аргументів) показані області перевищення обчислювальної складності (швидкодії) одного алгоритму по відношенню до іншого. Проведено порівняльний аналіз швидкодії нерекуррентного та рекурентних варіантів УРІА між собою і кожного з них у порівнянні з БСА. Despite the fact that the generalized relaxation iterative algorithm (GRIA) for today is most fast and precise iterative algorithm GMDH for which the convergence is proved, its analogues: a multi-layered simplified algorithm (MSA) and multi-layered algorithm with combinatorics and selection of generalized variables (MACSG) also have their "niche" applicability. Areas of exceedance computational complexity (running speed) of an algorithm with respect to another in the plane of two parameters such as sample size (number of observations) and model complexity (number of arguments) are shown. A comparative analysis of the running speed of nonrecurrent and recurrent variants GRIA between themselves and each of them compared to the MSA is provided.
issn XXXX-0044
url https://nasplib.isofts.kiev.ua/handle/123456789/83671
citation_txt Сравнительный анализ вычислительной сложности алгоритмов релаксационно-итерационного типа / Н.В. Кондаршова // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2013. — Вип. 5. — С. 184-200. — Бібліогр.: 9 назв. — рос.
work_keys_str_mv AT kondaršovanv sravnitelʹnyianalizvyčislitelʹnoisložnostialgoritmovrelaksacionnoiteracionnogotipa
first_indexed 2025-12-07T16:26:12Z
last_indexed 2025-12-07T16:26:12Z
_version_ 1850867473232953344