Виявлення залежностей даних

У статті описується розроблений алгоритм пошуку залежностей у підмножинах об’єктів досліджуваного набору даних. Даний алгоритм дозволяє ефективно виявляти асоціативні залежності за заданими критеріями якості. Застосування розробленого методу виявлення залежностей в даних можливе в багатьох предметни...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Математичні машини і системи
Datum:2012
1. Verfasser: Пшеничний, О.Ю.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут проблем математичних машин і систем НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/83972
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Виявлення залежностей даних / О.Ю. Пшеничний // Мат. машини і системи. — 2012. — № 1. — С. 89-97. — Бібліогр.: 4 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:У статті описується розроблений алгоритм пошуку залежностей у підмножинах об’єктів досліджуваного набору даних. Даний алгоритм дозволяє ефективно виявляти асоціативні залежності за заданими критеріями якості. Застосування розробленого методу виявлення залежностей в даних можливе в багатьох предметних галузях та дозволяє виявити нові закономірності в даних, що покращує роботу фахівців та якість прийнятих ними рішень. В статье описан разработанный алгоритм поиска зависимостей в подмножествах объектов исследуемого набора данных. Данный алгоритм позволяет эффективно выявлять ассоциативные зависимости в данных по заданным критериям качества. Использование разработанного метода поиска зависимостей в данных возможно в многих предметных областях и позволяет выявить новые закономерности в данных, что улучшает работу специалистов и качество принятых ими решений. The worked out algorithm of data search dependencies in the object subsets of investigated dataset is described in the article. This algorithm allows effectively reveal associative dependencies based on specified quality criteria. Application of developed data dependency detection method is possible in many specializations and allows finding new data patterns which improves work and decisions quality of specialists.
ISSN:1028-9763