Об эквивалентности вероятностных мер, порожденных решениями нелинейных эволюционных дифференциальных уравнений в гильбертовом пространстве, возмущенных гауссовскими процессами. II

Продовжено дослідження еквівалентності мір, породжених розв’язками нелінійних еволюційних диференціальних рівнянь з необмеженими лінійними операторами, збурених випадковими гаусівськими процесами в гільбертовому просторі, зокрема Н. В просторі Н розглянуто два різних нелінійних еволюційних диференці...

Full description

Saved in:
Bibliographic Details
Published in:Кибернетика и системный анализ
Date:2012
Main Authors: Фомин-Шаташвили, А.А., Фомина, Т.А., Шаташвили, А.Д.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2012
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/84016
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Об эквивалентности вероятностных мер, порожденных решениями нелинейных эволюционных дифференциальных уравнений в гильбертовом пространстве, возмущенных гауссовскими процессами. II / А.А. Фомин-Шаташвили, Т.А. Фомина, А.Д. Шаташвили // Кибернетика и системный анализ. — 2012. — Т. 48, № 1. — С. 49-61. — Бібліогр.: 10 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Продовжено дослідження еквівалентності мір, породжених розв’язками нелінійних еволюційних диференціальних рівнянь з необмеженими лінійними операторами, збурених випадковими гаусівськими процесами в гільбертовому просторі, зокрема Н. В просторі Н розглянуто два різних нелінійних еволюційних диференціальних рівняння, але збурених в правій частині одним і тим же випадковим процесом Гауса. Встановлюються достатні умови для існування і єдиності розв’язку цих рівнянь, еквівалентність заходів, породжених розв’язками цих рівнянь, а також в явному вигляді записуються формули щільності Радона–Никодима відповідних мір, обчислених в термінах коефіцієнтів даних рівнянь The paper continues the studies started by the authors in the equivalence of the measures generated by the solutions of nonlinear evolution differential equations with unbounded linear operators perturbed by random Gaussian processes in a Hilbert space, in particular Н. Two different nonlinear evolution differential equations perturbed by the same random Gaussian process in the right-hand side are considered in the space Н. The sufficient existence and uniqueness conditions are established for the solutions of these equations, the equivalence of the measures generated by the solutions is proved, and explicit formulas of the Radon–Nikodym density of the respective measures calculated in terms of the coefficients of the considered equations are written.
ISSN:0023-1274