Рандомизированные проекционные методы формирования бинарных разреженных векторных представлений

Досліджуються властивості рандомізованих бінарних векторних представлень з регульованою часткою ненульових компонентів, які формуються з вхідних векторів проекцією випадкової матриці з тернарними елементами {–1, 0, +1}. Проаналізовано точність оцінювання мір схожості–відмінності вихідних векторів, щ...

Full description

Saved in:
Bibliographic Details
Published in:Кибернетика и системный анализ
Date:2012
Main Authors: Рачковский, Д.А., Мисуно, И.С., Слипченко, С.В.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2012
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/84026
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Рандомизированные проекционные методы формирования бинарных разреженных векторных представлений / Д.А. Рачковский, И.С. Мисуно, С.В. Слипченко // Кибернетика и системный анализ. — 2012. — Т. 48, № 1. — С. 175-187. — Бібліогр.: 25 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Досліджуються властивості рандомізованих бінарних векторних представлень з регульованою часткою ненульових компонентів, які формуються з вхідних векторів проекцією випадкової матриці з тернарними елементами {–1, 0, +1}. Проаналізовано точність оцінювання мір схожості–відмінності вихідних векторів, що мають формат із плаваючою комою, за вихідними бінарними векторами. Отримані векторні представлення можуть використовуватися для обчислювальної ефективної обробки замість великих масивів вхідних багатовимірних векторів у застосуваннях, пов’язаних з пошуком, класифікацією, асоціативною пам’яттю та ін. We investigate the properties of randomized binary vector representations with adjustable sparseness formed from the input vectors by projecting them using a random matrix with ternary elements {–1, 0, +1}. We analyze the accuracy of estimating the measures of similarity-difference of the source vectors having a floating-point format by the output binary vectors. Those vector representations can be used for an efficient processing of large volumes of input multidimensional vectors in applications related to search, classification, associative memory, etc.
ISSN:0023-1274