Математическое моделирование ограничений на допустимые расстояния между геометрическими объектами
Введено поняття вільної від радикалів псевдонормалізованої Ф-функції, що дозволяє описувати обмеження на мінімально та максимально припустимі відстані між двовимірними φ-об’єктами. Допускаються афінні відображення трансляції та повороту. Наведено теорему про існування вільної від радикалів псевдоно...
Збережено в:
| Опубліковано в: : | Кибернетика и системный анализ |
|---|---|
| Дата: | 2012 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/84104 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Математическое моделирование ограничений на допустимые расстояния между геометрическими объектами / Ю.Г. Стоян, А.В. Панкратов, Т.Е. Романова // Кибернетика и системный анализ. — 2012. — Т. 48, № 3. — С. 12-17. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Введено поняття вільної від радикалів псевдонормалізованої Ф-функції, що дозволяє описувати обмеження на мінімально та максимально припустимі відстані між двовимірними φ-об’єктами. Допускаються афінні відображення трансляції та повороту. Наведено теорему про існування вільної від радикалів псевдонормалізованої Ф-функції для пари довільних φ-об’єктів, границі яких формуються об’єднанням дуг кіл і відрізків прямих. Запропоновано ефективний алгоритм побудови псевдонормалізованих Ф-функцій.
The paper introduces the concept of radical-free pseudonormalized Ф-functions, which allows us to describe constraints for minimum and maximum a φ-objects. We allow translations and rotations of φ-objects in a two-dimensional Euclidean space. The theorem about the existence of a radical-free pseudonormalized Ф-function for a pair of arbitrary-shaped φ-objects whose frontiers are formed by the union of line segments and circular arcs is formulated.
|
|---|---|
| ISSN: | 0023-1274 |