Хаотическая динамика в квадратичных системах с сингулярной линейной частью
Знайдено нові умови існування гомоклінічних та гетероклінічних орбіт для систем звичайних квадратичних диференціальних рівнянь з сингулярною лінійною частиною. Реалізація цих умов разом з теоремами Шильнікова гарантує існування хаотичних атракторів в автономних квадратичних 3-D системах. Наводяться...
Gespeichert in:
| Veröffentlicht in: | Кибернетика и системный анализ |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/84130 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Хаотическая динамика в квадратичных системах с сингулярной линейной частью / В.Е. Белозеров, С.А. Волкова // Кибернетика и системный анализ. — 2012. — Т. 48, № 4. — С. 116-125. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Знайдено нові умови існування гомоклінічних та гетероклінічних орбіт для систем звичайних квадратичних диференціальних рівнянь з сингулярною лінійною частиною. Реалізація цих умов разом з теоремами Шильнікова гарантує існування хаотичних атракторів в автономних квадратичних 3-D системах. Наводяться приклади хаотичних атракторів.
New existence conditions are founded for homoclinic and heteroclinic orbits for systems of ordinary quadratic differential equations with singular linear part. The implementation of these conditions together with the Shilnikov theorems guarantees the existence of chaotic attractors in 3-D autonomous quadratic systems. The examples of the chaotic attractors are given.
|
|---|---|
| ISSN: | 0023-1274 |