Математическое моделирование геометрических фракталов с помощью R-функций

На базі нових конструктивних засобів теорії R-функцій запропоновано нові підходи до побудови рівнянь об’єктів фрактальної геометрії і наведено рівняння деяких, найвідоміших з них: крива, сніжинка та хрест Коха, килим Серпинського, фрактал Леві, дерево Піфагора. The main approaches to constructing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2012
Hauptverfasser: Максименко-Шейко, К.В., Шейко, Т.И.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/84135
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Математическое моделирование геометрических фракталов с помощью R-функций / К.В. Максименко-Шейко, Т.И. Шейко // Кибернетика и системный анализ. — 2012. — Т. 48, № 4. — С. 155-162. — Бібліогр.: 6 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:На базі нових конструктивних засобів теорії R-функцій запропоновано нові підходи до побудови рівнянь об’єктів фрактальної геометрії і наведено рівняння деяких, найвідоміших з них: крива, сніжинка та хрест Коха, килим Серпинського, фрактал Леві, дерево Піфагора. The main approaches to constructing the equations for objects of fractal geometry are proposed based on the new constructive means of the R-functions theory. The equations of the most well-known of them are observed: the Koch curve, snowflake, and cross, the Serpinski carpet, the Levy fractal, and the Pythagoras tree.
ISSN:0023-1274