Алгоритм декомпозиции геометрических объектов в 2D-задачах упаковки и раскроя
Введено клас базових 2D-об’єктів, для яких відомі Φ-функції. Доведено теорему про розбиття довільних φ-об’єктів, межа яких утворюється об’єднанням дуг кіл та відрізків прямих на базові об’єкти. Запропоновано покроковий алгоритм, який реалізує декомпозицію довільних двовимірних φ-об’єктів. Розглян...
Збережено в:
| Опубліковано в: : | Кибернетика и системный анализ |
|---|---|
| Дата: | 2011 |
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2011
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/84248 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Алгоритм декомпозиции геометрических объектов в 2D-задачах упаковки и раскроя / Ю.Г. Стоян, Н.И. Гиль, Т.Е. Романова, М.В. Злотник // Кибернетика и системный анализ. — 2011. — Т. 47, № 6. — С. 28-37. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Введено клас базових 2D-об’єктів, для яких відомі Φ-функції. Доведено теорему про розбиття довільних φ-об’єктів, межа яких утворюється об’єднанням дуг кіл та відрізків прямих на базові об’єкти. Запропоновано покроковий алгоритм, який реалізує декомпозицію довільних двовимірних φ-об’єктів. Розглянутий підхід ефективний для побудови Φ-функцій довільних об’єктів при математичному та комп’ютерному моделюванні 2D-задач пакування та розкрою. Наведено результати чисельних експериментів. Іл.: 16. Бібліогр.: 12 назв.
We introduce a class of basic 2D-objects whose Φ-functions are known and prove a theorem on the decomposition, into basic objects, of an arbitrary φ-object whose boundary is formed by circular arñs and line segments. We provide a step-by-step decomposition algorithm for arbitrary two-dimensional φ-objects. The algorithm performs well to derive Φ-functions of arbitrary φ-objects in mathematical and computer modeling of packing and cutting problems. Numerical results are presented.
|
|---|---|
| ISSN: | 0023-1274 |