Решение обобщенной обратной задачи о днях рождения

Доказаны теоремы об асимптотическом поведении решения обобщенной обратной задачи о днях рождения. В теоремах даны асимптотически неулучшаемые оценки в случае неравновероятного и независимого размещения частиц по ячейкам для появления l ≥ 1 k-кратных совпадений. Полученный результат можно применять...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2012
Автор: Ендовицкий, П.А.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/84292
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Решение обобщенной обратной задачи о днях рождения / П.А. Ендовицкий // Доп. НАН України. — 2012. — № 7. — С. 20-27. — Бібліогр.: 10 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Доказаны теоремы об асимптотическом поведении решения обобщенной обратной задачи о днях рождения. В теоремах даны асимптотически неулучшаемые оценки в случае неравновероятного и независимого размещения частиц по ячейкам для появления l ≥ 1 k-кратных совпадений. Полученный результат можно применять в криптографии для оценивания трудоемкости построения коллизий хэш-функций. Доведено теореми про асимптотичну поведiнку розв’язку в узагальненiй задачi про днi народження. У теоремах наведенi асимптотично непокращувальнi оцiнки у випадку нерiвноймовiрного та незалежного розмiщення частинок по комiрках для появи l ≥ 1 k-кратних збiгiв. Отриманий результат можна застосовувати в криптографiї для оцiнювання трудомiсткостi побудови колiзiй хеш-функцiй. Theorems of the asymptotic behavior of the solution of a generalized inverse birthday problem are proved. They give the asymptotically best possible estimates in the case of a nonuniform independent arrangement of particles in cells for the appearance of l ≥ 1 k-fold coincidences. The result can be applied to the evaluation of the laboriousness of a construction of collisions of the hash-functions in cryptography.
ISSN:1025-6415