О робастной устойчивости импульсных систем с последействием
Рассматривается класс неточных механических систем, математическое описание которых представлено так называемыми гибридными системами уравнений, т. е. системами, состоящими из двух типов уравнений, связанных между собой. А именно, рассматриваются системы с последействием при импульсных возмущениях,...
Збережено в:
| Дата: | 2012 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2012
|
| Назва видання: | Доповіді НАН України |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/84356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | О робастной устойчивости импульсных систем с последействием / А.А. Мартынюк, Ю.А. Мартынюк-Черниенко // Доповiдi Нацiональної академiї наук України. — 2012. — № 8. — С. 47-53. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Рассматривается класс неточных механических систем, математическое описание которых представлено так называемыми гибридными системами уравнений, т. е. системами, состоящими из двух типов уравнений, связанных между собой. А именно,
рассматриваются системы с последействием при импульсных возмущениях, для которых развит прямой метод Ляпунова на основе вспомогательных функций, заданных на произведении пространств. |
|---|