Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems

The purpose of research is to establish and study conditions, that define when system identification problems are well-posed and when solutions become unstable and therefore practically unfit for parametric-structural identification on the base of description in the form of infinite expansions. Resu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Gubarev, V.F., Gummel, A.V., Melnichuk, S.V.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України 2014
Назва видання:Кибернетика и вычислительная техника
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/84521
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems / V.F. Gubarev, A.V. Gummel, S.V. Melnichuk // Кибернетика и вычислительная техника. — 2014. — Вип. 177. — С. 5-15. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The purpose of research is to establish and study conditions, that define when system identification problems are well-posed and when solutions become unstable and therefore practically unfit for parametric-structural identification on the base of description in the form of infinite expansions. Results: It was shown that solution high sensitivity is associated with illconditioned matrices that are used to estimate the coefficients of the model. For finite-frequency and subspace identification methods it was demonstrated that depending on the ratio of the input data error and the condition number of matrix the solution of identification problem can be both stable and unstable.