Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems
The purpose of research is to establish and study conditions, that define when system identification problems are well-posed and when solutions become unstable and therefore practically unfit for parametric-structural identification on the base of description in the form of infinite expansions. Resu...
Gespeichert in:
| Veröffentlicht in: | Кибернетика и вычислительная техника |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
2014
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/84521 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems / V.F. Gubarev, A.V. Gummel, S.V. Melnichuk // Кибернетика и вычислительная техника. — 2014. — Вип. 177. — С. 5-15. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-84521 |
|---|---|
| record_format |
dspace |
| spelling |
Gubarev, V.F. Gummel, A.V. Melnichuk, S.V. 2015-07-09T19:31:07Z 2015-07-09T19:31:07Z 2014 Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems / V.F. Gubarev, A.V. Gummel, S.V. Melnichuk // Кибернетика и вычислительная техника. — 2014. — Вип. 177. — С. 5-15. — Бібліогр.: 10 назв. — англ. 0452-9910 https://nasplib.isofts.kiev.ua/handle/123456789/84521 681.5 The purpose of research is to establish and study conditions, that define when system identification problems are well-posed and when solutions become unstable and therefore practically unfit for parametric-structural identification on the base of description in the form of infinite expansions. Results: It was shown that solution high sensitivity is associated with illconditioned matrices that are used to estimate the coefficients of the model. For finite-frequency and subspace identification methods it was demonstrated that depending on the ratio of the input data error and the condition number of matrix the solution of identification problem can be both stable and unstable. Рассмотрены проблемы моделирования и идентификации сложных динамических систем. Для задач структурно-параметрической идентификации на основе описания в виде бесконечных разложений установлены и исследованы условия, при которых эти задачи являются корректно поставленными, а когда их решения становятся неустойчивыми и, следовательно, практически непригодными. Полученные результаты являются фундаментальными и дают более глубокое понимание процесса идентификации. Розглянуто проблеми моделювання та ідентифікації складних динамічних систем. Для задач структурно-параметричної ідентифікації на основі опису у вигляді нескінченних розкладів встановлено та досліджено умови, за яких ці задачі є коректно поставленими, а коли їх розв’язки стають нестійкими і, отже, практично непридатними. Отримані результати є фундаментальними і дають більш глибоке розуміння процесу ідентифікації. en Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України Кибернетика и вычислительная техника Системы и интеллектуальное управление Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems Корректная идентификация бесконечномерных систем ядерного типа и многомерных систем Коректна ідентифікація нескінченновимірних та багатовимірних систем ядерного типу Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems |
| spellingShingle |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems Gubarev, V.F. Gummel, A.V. Melnichuk, S.V. Системы и интеллектуальное управление |
| title_short |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems |
| title_full |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems |
| title_fullStr |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems |
| title_full_unstemmed |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems |
| title_sort |
well-posed identification of nuclear type infinite and multidimentional systems |
| author |
Gubarev, V.F. Gummel, A.V. Melnichuk, S.V. |
| author_facet |
Gubarev, V.F. Gummel, A.V. Melnichuk, S.V. |
| topic |
Системы и интеллектуальное управление |
| topic_facet |
Системы и интеллектуальное управление |
| publishDate |
2014 |
| language |
English |
| container_title |
Кибернетика и вычислительная техника |
| publisher |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України |
| format |
Article |
| title_alt |
Корректная идентификация бесконечномерных систем ядерного типа и многомерных систем Коректна ідентифікація нескінченновимірних та багатовимірних систем ядерного типу |
| description |
The purpose of research is to establish and study conditions, that define when system identification problems are well-posed and when solutions become unstable and therefore practically unfit for parametric-structural identification on the base of description in the form of infinite expansions. Results: It was shown that solution high sensitivity is associated with illconditioned matrices that are used to estimate the coefficients of the model. For finite-frequency and subspace identification methods it was demonstrated that depending on the ratio of the input data error and the condition number of matrix the solution of identification problem can be both stable and unstable.
Рассмотрены проблемы моделирования и идентификации сложных динамических систем. Для задач структурно-параметрической идентификации на основе описания в виде бесконечных разложений установлены и исследованы условия, при которых эти задачи являются корректно поставленными, а когда их решения становятся неустойчивыми и, следовательно, практически непригодными. Полученные результаты являются фундаментальными и дают более глубокое понимание процесса идентификации.
Розглянуто проблеми моделювання та ідентифікації складних динамічних систем. Для задач структурно-параметричної ідентифікації на основі опису у вигляді нескінченних розкладів встановлено та досліджено умови, за яких ці задачі є коректно поставленими, а коли їх розв’язки стають нестійкими і, отже, практично непридатними. Отримані результати є фундаментальними і дають більш глибоке розуміння процесу ідентифікації.
|
| issn |
0452-9910 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/84521 |
| citation_txt |
Well-Posed Identification of Nuclear Type Infinite and Multidimentional Systems / V.F. Gubarev, A.V. Gummel, S.V. Melnichuk // Кибернетика и вычислительная техника. — 2014. — Вип. 177. — С. 5-15. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT gubarevvf wellposedidentificationofnucleartypeinfiniteandmultidimentionalsystems AT gummelav wellposedidentificationofnucleartypeinfiniteandmultidimentionalsystems AT melnichuksv wellposedidentificationofnucleartypeinfiniteandmultidimentionalsystems AT gubarevvf korrektnaâidentifikaciâbeskonečnomernyhsistemâdernogotipaimnogomernyhsistem AT gummelav korrektnaâidentifikaciâbeskonečnomernyhsistemâdernogotipaimnogomernyhsistem AT melnichuksv korrektnaâidentifikaciâbeskonečnomernyhsistemâdernogotipaimnogomernyhsistem AT gubarevvf korektnaídentifíkacíâneskínčennovimírnihtabagatovimírnihsistemâdernogotipu AT gummelav korektnaídentifíkacíâneskínčennovimírnihtabagatovimírnihsistemâdernogotipu AT melnichuksv korektnaídentifíkacíâneskínčennovimírnihtabagatovimírnihsistemâdernogotipu |
| first_indexed |
2025-11-26T02:45:07Z |
| last_indexed |
2025-11-26T02:45:07Z |
| _version_ |
1850609187350904832 |
| fulltext |
5
Системы и интеллектуальное
управление
УДК 681.5
WELL-POSED IDENTIFICATION OF NUCLEAR
TYPE INFINITE AND MULTIDIMENSIONAL
SYSTEMS
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk
Space Research Institute of the National Academy of Sciences of Ukraine and State
Space Agency of Ukraine, Kiev, Ukraine
Рассмотрены проблемы моделирования и идентификации
сложных динамических систем. Для задач структурно-параметрической
идентификации на основе описания в виде бесконечных разложений
установлены и исследованы условия, при которых эти задачи являются
корректно поставленными, а когда их решения становятся неустойчивыми
и, следовательно, практически непригодными. Полученные результаты
являются фундаментальными и дают более глубокое понимание процесса
идентификации.
Ключевые слова: системная идентификация, некорректно-
поставленная задача, конечно-частотная идентификация, идентификация
на основе выделения ортогонального подпространства (4SID),
регуляризация.
Розглянуто проблеми моделювання та ідентифікації
складних динамічних систем. Для задач структурно-параметричної
ідентифікації на основі опису у вигляді нескінченних розкладів
встановлено та досліджено умови, за яких ці задачі є коректно
поставленими, а коли їх розв’язки стають нестійкими і, отже, практично
непридатними. Отримані результати є фундаментальними і дають більш
глибоке розуміння процесу ідентифікації.
Ключові слова: системна ідентифікація, некоректно-
визначена задача, кінцево-частотна ідентифікація, ідентифікація на основі
виділення ортогонального підпростору (4SID), регуляризація.
INTRODUCTION
System identification problems belong to a class of inverse problems which
have the feature that under certain conditions its solutions become unstable i.e.
sensitive to the errors in input data. Especially it takes place in multidimensional
cases when it is necessary to assume a model set which adequately represents the
original system, then select a model order and find other parameters using only
general information about unknown plant. Processes in such system may be so
complex that on the base of fundamental laws and theoretical results it is often
impossible to define even the model set which includes a model that completely
describes the system that generates data. Also it is supposed that there is a
causation between finite input and output of a plant. The only possible way in such
cases is to use different infinite-dimensional expansion as model set [1, 2].
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
6
Computational mathematic methods serve as a foundation of such approach (e.g.
Galerkin method and other iterational methods, methods based on Green function
or impulse response for system with disturbed or lumped parameters [3–5]).
Example of such complicated system is a heating processes in power station.
Fuel supply that affects vapor parameters is considered as an input. Processes of
burning, heating and vaporizing are so complex that it is impossible to describe
them in any other way besides approach proposed above, that is using infinite-
dimensional model which links input (fuel supply) and output (vapor parameters).
In this case input-output map is an impulse response that induces nuclear Hankel
operator or equivalent non-rational transfer function.
The approximation of infinite-dimensional linear system by finite-dimensional
ones is a subject of interest in a mathematical theory. In [2] using output normal
realization the convergence of the finite-dimensional approximation to precise
model was proven and error bounds on the truncated realization were given. These
results are important for model reduction problem, i.e. conversion of the complex
infinite-dimensional description into simple low-dimensional model [6].
In identification problem the reduced model order selection is defined
primarily by the well-posedness, for which it is necessary to satisfy conditions
providing the stability of the solution with respect to errors in the initial data. In
this sense truncated model order will be the main regularization parameter which
means that the dimension of rational approximation should be in agreement with
the errors in available data. Hence regularization procedure should be incorporated
in the existing methods of identification allowing to find the stable solution and to
extend model order when errors tend to zero.
This paper shows how this problem may be solved correctly with selection of
highest model order admissible by stability conditions using two popular
identification methods. Besides numerous computational experiments that were
conducted allowed us to clarify a cause of ill-posedness which is an essential to
identification problem. Fundamental properties of the regularized solutions are
established irrespectively to identification method used for plant that generated
output data.
Systems with single input and single output (SISO) are considered because
even in this case nontrivial results were revealed.
PROBLEM SETTING
For infinite-dimensional nuclear type linear SISO systems model set can be
written as
η+=ξ++= czybuAxx ,& , (1)
where A is a linear operator mapping between infinite-dimensional linear vector
spaces, b is a linear operator mapping one-dimensional space into infinite-
dimensional one, c is a projecting operator. Under suitable assumptions they lead
to existence of a non-rational transfer function bAsIcsG )()( −= . Values ξ and η
denote unknown perturbation in input and noise in output that may be present in
real system.
Description (1) be also appropriate for multi-dimensional case when system
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
7
has finite but large and unknown dimension. In this case A is a matrix, cb, are
vectors and transfer function is a rational. Such system is also a nuclear type if it
eigenvalues belong to left half-plane.
Let description (1) be proper for unknown real system, i.e. is a nuclear type
and (1) includes true model. It is required to find the finite-dimensional matrix A
and vectors cb, using experimental data ))(),(( tuty that would provide a rational
approximation of the real system described by (1) so that difference between
system output and model output would be either in accordance with errors ηξ, or
defined by stability condition of the solution. In other words it means to solve
identification problem correctly. For finite multidimensional case it means to
construct the model with significantly less dimension than dimension of the real
system. Here is a full analogy with so-called model reduction problem [6]. In this
case rational approximation (1) can be represented as
,, xcyubxAx T
nnn =+=& (2)
where nA is a matrix nn × , nb is a column-vector, Tc is a row-vector (T is a
transposition).
FINITE-FREQUENCY IDENTIFICATION WITH REGULARIZATION
Model reconstruction using Frequency method of identification is realized on
frequency domain parameters, extracted from experimentally measured output
when input is excited by the harmonic test signal. The classical frequency approach
has a long history and here we don’t give the review of these methods because
readers can find it for example in the paper [7]. We note that in recent years the
methods were significantly developed by Alexandrov and Orlov, see [7–11].
If (2) will be written in the form of Jordan realization it is easy to get the
following input-output relation
( )
[ ] .)()(sin)(cos
)()(
10
)(
1 0
∑ ∫
∑ ∫
=
θ−α−
=
θ−λ−
θθθ−β⋅+θ−β⋅+
+θθ=
P
p
t
p
s
pp
c
p
t
Q
q
t t
q
dutftfe
duegty
p
q
(3)
For simplicity sake here it is accepted that initial state under 0t is zero:
00 =t ; eigenvalue multiplicity is missing; Q is a number of real and P is a
number of complex-valued eigenvalues with 0,0 ≥α≥λ pq . Besides
,Pp
bcbcf
bcbcf
Qqbcg
c
np
s
np
s
np
c
np
s
p
s
np
s
np
c
np
c
np
c
p
nqnqq
1
,
,
,1 ,
=
−=
+=
==
, (4)
nqc and nqb are components of the vectors nb and nc for real eigenvalues and
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
8
c
npc , s
npc , c
npb , s
npb are components of these vectors corresponding Jordan block
α−β−
βα−
pp
pp .
From equations (4) it is possible to select different canonical form. For
example, assuming 1=nqb , 1=c
npb , 0=s
npb we receive the control canonical
realization and for 1=nqc , 1=c
npc , 0=s
npc we have observable canonical
realization. By analogy balanced realization may also be obtained.
In frequency method the system and model inputs are usually exited by
polyharmonic signal with K sinusoids of different frequencies kω and amplitudes
ku :
0,sin)(
1
≥ω= ∑
=
ttutu
K
k
kk . (5)
For sample data the regression equation is derived if substitute (5) in (3) and
integrate. As result we obtain
( ) ( )[ ]
( )
( ) ,cos
sin
cossin
)(
1 1
3222
1 1
4122
1
3223
1 1
22
ωγ−γ+
ω+λ
ω
+
+ω
γ+γ+
ω+λ
λ
+
+βγ−γ+βγ+γ+
+
ω+λ
ω
=
∑ ∑
∑ ∑
∑
∑ ∑
= =
= =
=
λ−
= =
λ−
tff
g
tff
g
etfftff
e
g
uty
k
Q
q
P
p
s
p
c
p
kq
qk
k
Q
q
P
p
s
p
c
p
kq
qq
P
p
t
p
s
p
c
pp
s
p
c
p
K
k
Q
q
t
kq
qk
k
p
q
(6)
where nPQ =+ 2 ,
( ) ( )222211 ),,(
pkp
p
pkp
p
kpp
β−ω+α
α
+
β+ω+α
α
=ωβαγ=γ ,
( ) ( )222222 ),,(
pkp
pk
pkp
pk
kpp
β−ω+α
β−ω
+
β+ω+α
β+ω
=ωβαγ=γ ,
( ) ( )222233 ),,(
pkp
p
pkp
p
kpp
β−ω+α
α
−
β+ω+α
α
=ωβαγ=γ ,
( ) ( )222244 ),,(
pkp
pk
pkp
pk
kpp
β−ω+α
β−ω
−
β+ω+α
β+ω
=ωβαγ=γ .
When ppqPQ βαλ ,,,, are known formula (6) becomes linear regression which can
be used for qg , c
pf , s
pf determination. In this regard three stages of identification
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
9
are proposed. At first maximal admissible by stability condition *Q and *P are
defined. In other words a solution of the identification problem for *Q and *P
should be weakly sensitive to errors in available data and further increase of order
n will lead to scattering of the estimated parameters. Then Q and P may be
considered as a regularization parameters. Here we have analogy with function
recovery problem which is given in the form of approximately defined coefficients
of Fourier expansion. At the second stage eigenvalues (i.e. ppq βαλ ,, ) are
calculated for known model order. At the final stage parameters qg , c
pf , s
pf are
estimated from equations (4) using linear regression and then coefficients
c
np
s
npnq
c
np
s
npnq cccbbb ,,,,, that correspond to Jordan realization in suitable canonical
form are founded.
For finding solution on the first and second stages it is proposed to use the
well known equations of the frequency identification method [7]
,,1,0)()()( KkjWjjV kkkk ==ωΨ+Φ−ω (7)
where ,1−=j
)(
)()(
k
k
k jW
jVjG
ω
ω
=ω and
012
2
1
1 )()()( vvjvjvjjV kn
n
kn
n
kk +ω++ω+ω=ω −
−
−
− K ,
011
1)()()( wwjwjwjjW kn
n
kn
n
kk +ω++ω+ω=ω −
− K are analytical expressions
for numerator and denominator of transfer function represented as frequency
response, kk jΨ+Φ is a value of transfer function on imaginary axis which may
be evaluated from measured in experiment output )(ty according to [7, 9]
∫
τ
ω=τΦ
0
sin)(2)( tdtty
u k
k
k , ∫
τ
ω=τΨ
0
cos)(2)( tdtty
u k
k
k , Kk ,1= . (8)
For large but finite τ kΦ and kΨ are determined with errors. If ∞→τ kΦ
and kΨ tend to precise values when certain requirements to the choice of kω are
realized [7, 9]. Besides correct identification on the base (7) is achieved when
nK ≥ . Then using corresponding part equations of (7) parameters iv )1,0( −= ni
may be expressed through iw ),0( ni = and after that we eliminate iv from
remaining equations. This procedure is correct because the relevant linear system
equations has a Vandermonde determinant, composed from different kω only, i.e.
it is a nonsingular and may be computed exactly. Details of this procedure one can
find in paper [12]. Here we write the final result namely the linear equation of the
system with respect to vector ),,,( 10 nwwww K= :
gHw = , (9)
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
10
where matrix H and g on the right side have a complicated dependence on kΦ ,
kΨ , kω that is ),,( kkkHH ωΨΦ= , ),,( kkkgg ωΨΦ= . Their expressions are
given in [12]. Large finite τ provides approximate kΦ , kΨ . As a result system (9)
has given approximate matrix H and right hand side of equation. Nuclear type
systems generate the data which lead to ill-conditionality of the matrix H even for
not large n , i.e. the problem (9) becomes ill-posed for multidimensional model. It
was established in [12] that solution of (9) will be stable if
,11)( <
τ
ε+
+εcHk (10)
where )(Hk is a matrix H condition number; ε is a boundary (or variance) for
noise and perturbation; cε defines level of computational error. Detailed
researches of the solution stability problem were realized by means of numerical
experiments. Wide class of systems with different structure parameters and noise
have generated data for identification which thereupon were utilized in algorithms
that estimates Φ̂ , Ψ̂ and matrix H . Model order n and therefore a dimension of
a system equation (9) was significant parameter. So matrix H and vector g were
computed for different n , i.e. we formed set of nH and ng for different n .
Condition number of the matrices obtained in numerical experiments is evaluated
by SVD decomposition
,T
nnnn VUH Σ= (11)
where nU , nV are orthogonal matrices and nΣ is a diagonal matrix with the
singular values in non-increasing order on the diagonal. Then matrix nH condition
number in spectral norm 2⋅ is defined by expression
,
)(
)()(κ 1
2 n
n
n
n
H
HH
σ
σ
= (12)
where 1σ is the first and nσ is the last singular values. Typical for nuclear type
system dependence )(κ2 nH from approximate model order n illustrates Fig. 1.
Increase of the model dimension on unit leads approximately to two order )(κ2 nH
enlargement.
Now we address the stability problem that is how to determine the regularized
solution of the identification problem. As it was said before model order n is
regarded as regularization parameter. However it is more convenient to use
condition number for numerical modeling of identification process instead n since
condition number is roughly linked with n for each concrete system. In this case
condition number may represent the class of system even with different n .
Estimations of Φ̂ and Ψ̂ depend on observation interval τ . Obviously this
dependence become tangible when τ is changed exponentially. So it is appropriate
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
11
to choose discrete time kτ as 010 τ=τ k
k where 0τ is initial proper observation
interval.
Fig. 1. Condition number values for approximate models of different order
We exploit small interval [ ]kkk ∆+ττ , near each kτ for data collection and
estimations of Φ̂ and Ψ̂ . We use set of matrices H obtained from these data for
stability analysis. We can judge about appearing unstable solution by the scattering
of eigenvalues obtained from equation 0)( =sW with coefficients iw ( ni ,1= )
calculated according to system (9). Fig. 2 summarizes the results of multiple
numerical experiments for data generating systems with different structures and
parameters. On plane of two parameters )(κ2 H and τ are shown the stability
domain A , range C where all systems were unstable and transition domain B
where part of the systems provide the stable solution and another are unstable.
Further τ increase leads to curves merging and after that joint curve tend to
saturation that is explained by dominant influence of computational errors. As a
result even for precise Φ , Ψ models with order 112 >+ PQ lie in unstable
domain. For models from transition domain the checking test on stability is
required.
Fig. 2. Solution stability domains for frequency identification
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
12
REGULARIZED SUBSPACE (4SID) IDENTIFICATION METHOD
To build a finite-dimensional model of a plant with a modification of the 4SID
method difference approximation of system (1) was selected as a model set. This
model set may be written as
,,1 t
T
tttt xcybuAxx =+=+ (13)
where A is a matrix α×α , b is a vector 1×α , Tc is a vector α×1 , α is a
model dimension, discretization t∆ is fitted so that 0lim =∆
∞→α
t , i.e. description
(13) should in limit lead to result coinciding with continuous approximation.
Subspace identification is a well developed method and description of it may
be found for example in [13, 14]. Here we consider simplified version. Let input
tu be exited by square wave-form oscillator alternating with relaxation intervals
∈
∈
=
+12
2
,0
,
i
ii
t St
Stu
u , ,,,2,1,0 Ni K= (14)
where K,, 20 SS are exiting intervals, K,, 31 SS are relaxation intervals. All 12 +iS
( Ni ,,1,0 K= ) have equal length M and duration of iS2 ( Ni ,,1,0 K= ) may
be varied. Hankel matrix Y is formed from M measurements
Miii yyy ,122,121,12 ,,, +++ K on each relaxation interval
=
+
+
+
MNMM
N
N
yyy
yyy
yyy
Y
,1231
2,123112
1,123111
K
MMMM
K
K
.
By analogy we form matrix X from vectors 12 +ix relevant to origin of each
relaxation interval
,
,1231
2,123112
1,123111
=
+
+
+
MNMM
N
N
xxx
xxx
xxx
X
K
MMMM
K
K
where α=+ ,1,,12 kx ki is a component of vector 12 +ix . Due to equations (13) and
specifics of the matrix X , Y the following matrix equation may be written
[13, 14]
,1 XY M ⋅Γ= + (15)
where
=Γ +
MT
T
T
M
Ac
Ac
c
M
1 is an observability matrix.
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
13
According to realization theory if 21 YYY ⋅= is any given full-rank
factorization of the Hankel matrix, then 1Y is the observability matrix and 2Y is the
matrix of initial state on the relaxation intervals for some state-space realization.
Optimal way for realization of such factorization is to use SVD decomposition. Let
the SVD of Y be given by
,TVQY Σ= (16)
where Q and V are orthogonal matrices and Σ is a diagonal matrix with singular
values in non-increasing order on the diagonal. If the data generating system is n
order, then in the ideal case (all 12 +i
my are precisely given) Y is of rank n , so that
only the n first singular values are non-zero provided that nNnMn >>≥α ,, .
But in reality instead of precise Y we would have a matrix ZYY +=
~ , where Y is
a true matrix and Z is a matrix produced by perturbation of input and output noise.
Then all singular values of matrix Σ will be positive. For multidimensional or
infinite-dimensional systems condition number is evaluated as a ratio of singular
values that grows exponentially when α incremented by one. So SVD
decomposition (16) we write as follows
,T
rrr
T
nnn VQVQY Σ+Σ= (17)
where )( rn QQQ = , ),( rn VVV = ,
Σ
Σ
=Σ
r
n
0
0
.
In the framework of statistical approach for finite-dimensional system the first
term corresponds to a “signal” and the second is a “noise”. It is clear that 0=Σr in
the absence of errors. So the dimension of nΣ defines first of all the system order
n . In our case due to ill-conditioning of the matrix nY (first term) for large (or
even for not large) n we consider partition (17) as regularization procedure. First
term with maximal n defines the maximum order of approximate model when
identification still gives the stable solution. Unlike to statistical approach the model
order estimation depends on value YY −
~ . When 0~
→− YY , then following
tendency holds ,*nn → where *n is an order of a model that corresponds to
deterministic case. Value *n is entirely defined by inevitable computational errors.
If partition in (17) is made correctly, which means the order of approximate
model satisfy the stability condition, the next step is to find the model parameters.
By setting nn Q=Γ −1 the matrix A for some realization can be obtained from the
matrix equation
,1:2:1 +Γ=⋅Γ MM A (18)
where 1:2 +Γ M is a submatrix derived from 1+ΓM crossing out the first row and
M:1Γ is a submatrix derived from 1+ΓM crossing out the last row.
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
14
In non-singular case system in (18) is overdetermined and a least-squares or a
total least-squares methods to solve the system with respect to A can be used. After
obtaining matrix A from (18) we find its eigenvalues that allows to write matrix
A in Jordan realization. For canonical controllable realization vector b is given
and only vector c should be found. When canonical observable realization is
preferable, then vector b should be found with given vector c . With given A and
b from first equation in (13) and (14) it is easy to calculate tx in each point t of
the observation interval. Then the second equation in (13) allows to find vector c
from overdetermined linear system of equations with ty measured in experiment
for the same input. Here we remark that problem estimation of c is more stable in
comparison with determination of the matrix A eigenvalues. It means that well-
posedness of the identification problem under consideration is completely defined
by the splitting procedure (17) that is choise of term T
nnn VQ Σ . Multiple numerical
experiments show that condition number depends on n in just the same way as it
reports in Fig. 1.
Stability property in dependence on n was studied by numerical modeling.
Two main parameters define the solution stability, namely, YY −=ε
~ and
condition number 2κ for spectral norm of the matrix T
nnn VQ Σ , i.e.
n
T
nnn VQ
σ
σ1
2 )(κ =Σ where 1σ is the first and nσ is the last singular values of the
matrix nΣ . Instead of regularization parameter n we choose 2κ on the same
reason that was pointed out for frequency method. So the plane of these two
parameters ε and 2κ was used for demonstration of stability result obtained in
multiple experiments with different system structures and parameters generating
the data.
Fig. 3. Solution stability domains for subspace identification method
Domain A in Fig. 3 conforms to stability and C is unstable region. Between
them transition zone B is located where part of the identified models are stable
and the other are unstable. Here as in Fig. 2 the additional stability test is required
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
15
to use, for example set of data obtained by randomization. Fig. 2 and
Fig. 3 can be used for model construction of reduced order or maximal order
assumed by stability condition.
CONCLUSIONS
Identification problems of infinite or multidimensional systems may be fully
treated as essentially ill-posed. Because of using only measured in experiment
inaccurate data in many cases we not only look for a solution of the operator
equation but also an operator itself. Hence the problem arises how to write the
model set that includes true model of a plant. In such situation we propose in
capacity of model set to represent it in the form of infinite expansion and to find
finite approximation consistent with errors in available data using for this
regularization. In other words the identification problem in such setting is always
ill-posed. It is shown that this property is fundamental regardless what kind of
method is applied.
It should be pointed out that approximate model obtained in identification is
similar to real system with respect to output only. Moreover model parameters
(eigenvalues and others) can essentially differ from the same parameters of the real
system. For example, in most experiments each model eigenvalue represent whole
cluster of system eigenvalues, i.e. is determined as averaged estimation.
It is also worse mentioning also about ill-posed identification of the finite-
dimentional systems. All systems generating data with order corresponding to
domain C in Fig, 2 and Fig. 3 lead to ill-posed identification. For such systems
only approximate model of less order than at original system may be reconstructed.
1. Funrmann P.A. Linear Systems and Operators in Hilbert Space. McGraw-Hill, New York.
1981. 476 p.
2. Glower K., Curtain R.F., Partington J.R. Realization and Approximation of Linear Infinite-
Dimensional Systems with Error Bounds. SIAM Journal Control and Optimization, 1988,
vol. 26, no. 4, pp. 863–897.
3. Gubarev V.F. Problem-oriented identification and control in the system with distributed
parameters. Problems of Control and Informatic, 2000, no. 3, pp. 26–37
(in Russian).
4. Gubarev V.F. Rational approximation of the system with distributed parameters. Cybernetic
and system analysis, 2008, no. 2, pp. 99–116 (in Russian).
5. Gubarev V., Zhukov O. Rational Approximation and Identification of Distributed Parameter
Systems. Proceedings of the 17-th World Congress IFAC. July 6–11 2008. Seoul, Korea, pp.
6452–6457 (in Russian).
6. Antoulas A.C., Sorensen D.C., Gugercin S. A survey of model reduction methods for large-
scale systems. Contemporary mathematic, 2001, 280, pp. 193–219.
7. Alexsandrov A.G. Method of frequency parameters. Automatica and Telemechanick. 1988,
50, no. 12, pp. 3–5 (in Russian).
8. Alexsandrov A.G. Finite-frequency identification: multidimensional object. International
conference on control problem. Proc. of the conf. Moscow: Institute of control problem RAS,
1999, no. 1, pp. 15–28 (in Russian).
9. Orlov Yu.F. Frequency parameters identification under parallel tests. Automatica and
Telemechanick, 2007, 68, no. 1, pp. 20–40 (in Russian).
10. Gubarev V.F., Melnichuk S.V. Identification of multidimensional system using steady-state
parameters. Problems of Control and Informatic, 2012, no. 5, pp. 26–43 (in Russian).
Получено 26.06.2014
V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177
|