Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands

The purpose of this work is to develop and to investigate the mathematical model of hypometabolism, and to develop the software for execution of computing experiments with the model. Предложена математическая модель динамики напряжений респираторных газов с учетом гипометаболизма, который развиваетс...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и вычислительная техника
Дата:2014
Автор: Bobriakova, I.L.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/84533
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands / I.L. Bobriakova// Кибернетика и вычислительная техника. — 2014. — Вип. 178. — С. 22-35. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-84533
record_format dspace
spelling Bobriakova, I.L.
2015-07-09T21:12:58Z
2015-07-09T21:12:58Z
2014
Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands / I.L. Bobriakova// Кибернетика и вычислительная техника. — 2014. — Вип. 178. — С. 22-35. — Бібліогр.: 8 назв. — англ.
0452-9910
https://nasplib.isofts.kiev.ua/handle/123456789/84533
519.876
The purpose of this work is to develop and to investigate the mathematical model of hypometabolism, and to develop the software for execution of computing experiments with the model.
Предложена математическая модель динамики напряжений респираторных газов с учетом гипометаболизма, который развивается в организме человека на высокогорье. Анализ вычислительных экспериментов позволил сделать выводы о характере изменений режимов функционирования организма при переходных процессах и в стационарных состояниях, влиянии систем внешнего дыхания и кровообращения на формирование уровней управляющих параметров, а также о роли гипометаболизма при воздействии на организм возмущений внутренней и внешней сред.
Запропоновано математичну модель динаміки напружень респіраторних газів з урахуванням гіпометаболізму, який розвивається в організмі людини на високогір'ї. Аналіз обчислювальних експериментів дозволив зробити висновки щодо характеру змін режимів функціонування організму при перехідних процесах і в стаціонарних станах, впливу систем зовнішнього дихання та кровообігу на формування рівнів керуючих параметрів, а також ролі гіпометаболізму при впливі на організм збурень внутрішнього і зовнішнього середовищ.
en
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
Кибернетика и вычислительная техника
Системы и интеллектуальное управление
Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
Математическое моделирование процесса гипометаболизма для выявления особенностей организма человека при работе в условиях высокогорья
Математичне моделювання процесу гіпометаболізму для виявлення особливостей організму людини при роботі в умовах високогір'я
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
spellingShingle Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
Bobriakova, I.L.
Системы и интеллектуальное управление
title_short Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
title_full Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
title_fullStr Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
title_full_unstemmed Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands
title_sort mathematical modeling of hypometabolism process to identify peculiarities of human organism during the work under condition of highlands
author Bobriakova, I.L.
author_facet Bobriakova, I.L.
topic Системы и интеллектуальное управление
topic_facet Системы и интеллектуальное управление
publishDate 2014
language English
container_title Кибернетика и вычислительная техника
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
format Article
title_alt Математическое моделирование процесса гипометаболизма для выявления особенностей организма человека при работе в условиях высокогорья
Математичне моделювання процесу гіпометаболізму для виявлення особливостей організму людини при роботі в умовах високогір'я
description The purpose of this work is to develop and to investigate the mathematical model of hypometabolism, and to develop the software for execution of computing experiments with the model. Предложена математическая модель динамики напряжений респираторных газов с учетом гипометаболизма, который развивается в организме человека на высокогорье. Анализ вычислительных экспериментов позволил сделать выводы о характере изменений режимов функционирования организма при переходных процессах и в стационарных состояниях, влиянии систем внешнего дыхания и кровообращения на формирование уровней управляющих параметров, а также о роли гипометаболизма при воздействии на организм возмущений внутренней и внешней сред. Запропоновано математичну модель динаміки напружень респіраторних газів з урахуванням гіпометаболізму, який розвивається в організмі людини на високогір'ї. Аналіз обчислювальних експериментів дозволив зробити висновки щодо характеру змін режимів функціонування організму при перехідних процесах і в стаціонарних станах, впливу систем зовнішнього дихання та кровообігу на формування рівнів керуючих параметрів, а також ролі гіпометаболізму при впливі на організм збурень внутрішнього і зовнішнього середовищ.
issn 0452-9910
url https://nasplib.isofts.kiev.ua/handle/123456789/84533
citation_txt Mathematical Modeling of Hypometabolism Process to Identify Peculiarities of Human Organism During the Work Under Condition of Highlands / I.L. Bobriakova// Кибернетика и вычислительная техника. — 2014. — Вип. 178. — С. 22-35. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT bobriakovail mathematicalmodelingofhypometabolismprocesstoidentifypeculiaritiesofhumanorganismduringtheworkunderconditionofhighlands
AT bobriakovail matematičeskoemodelirovanieprocessagipometabolizmadlâvyâvleniâosobennosteiorganizmačelovekaprirabotevusloviâhvysokogorʹâ
AT bobriakovail matematičnemodelûvannâprocesugípometabolízmudlâviâvlennâosoblivosteiorganízmulûdiniprirobotívumovahvisokogírâ
first_indexed 2025-11-25T22:42:34Z
last_indexed 2025-11-25T22:42:34Z
_version_ 1850569522849775616
fulltext 22 UDK 519.876 MATHEMATICAL MODELING OF HYPOMETABOLISM PROCESS TO IDENTIFY PECULIARITIES OF HUMAN ORGANISM DURING THE WORK UNDER CONDITION OF HIGHLANDS I.L. Bobriakova V.M. Glushkov Institute of Cybernetics of NAS of Ukraine Предложена математическая модель динамики напряжений респираторных газов с учетом гипометаболизма, который развивается в организме человека на высокогорье. Анализ вычислительных экспериментов позволил сделать выводы о характере изменений режимов функционирования организма при переходных процессах и в стационарных состояниях, влиянии систем внешнего дыхания и кровообращения на формирование уровней управляющих параметров, а также о роли гипометаболизма при воздействии на организм возмущений внутренней и внешней сред. Ключевые слова: математическая модель, системы дыхания и кровообращения, напряжение газов, гипоксия, гипометоболизм, возбуждающие воздействия, вычислительные эксперименты. Запропоновано математичну модель динаміки напружень респіраторних газів з урахуванням гіпометаболізму, який розвивається в організмі людини на високогір'ї. Аналіз обчислювальних експериментів дозволив зробити висновки щодо характеру змін режимів функціонування організму при перехідних процесах і в стаціонарних станах, впливу систем зовнішнього дихання та кровообігу на формування рівнів керуючих параметрів, а також ролі гіпометаболізму при впливі на організм збурень внутрішнього і зовнішнього середовищ. Ключові слова: математична модель, система дихання і кровообігу, напруга газів, гіпоксія, гіпометаболізм, збурюючі впливи, обчислювальні експерименти. INTRODUCTION Hypometaboliс and hypoxic states are in the focus of attention of researchers since organism is often impacted by hypoxic factors, particularly under conditions of highlands, as well as during significant physical loads or some severe pathologic process. Hypoxic or exogenous hypoxia is developed during decreasing of partial pressure of oxygen in inhaled air. During hypoxic hypoxia the oxygen tension in arterial blood, the saturation of hemoglobin with oxygen and its total content in the blood are being decreased. Negative impact can be caused also by hypocapnia, developed as a result of compensatory hyperventilation of lungs. Extreme hypocapnia causes worsening of blood supply to brain and heart (vasoconstriction) and respiratory alkalosis. In this connection, it is interesting to investigate the energy reserves of organism and the ways of its strengthening under hypoxic conditions.  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 23 THE RELEVANCE OF THE TOPIC Investigation of the processes of human organism breathing system self- regulation represents particular scientific area that is being widely developed last years as a result of success in mathematical modeling. However the regulation mechanisms of functional state of human organism under conditions of highland hypoxia are not sufficiently studied yet. Impossibility of such investigations was related with the difficulties of experimental determination of the several most important parameters and with the absence of adequate mathematical models for dynamics of these processes. PROBLEM DEFINITION Mechanisms of formation of hypometabolic state of human being under conditions of highlands are considered. Mathematical model of functional systems of breathing and blood circulation has been used to analyze this phenomenon on system level. The purpose of this work is development and investigation of mathematical model of hypometabolism, and development of software for execution of computing experiments with the model. RESULTS 1. Developed complex of mathematical model of the gas mass carry process in organism and software is applied for assessment of the dynamics of functional state of human being on conditions of work at highlands. 2. Implemented numerical analysis of the models of respiratory exchange control enables to: - follow dynamics of the main physiological parameters of the model during transient processes and in stationary states; - forecast and quantitatively assess regulatory reactions of the organism under given disturbances; - carry out individualization of model developments on condition of availability of array of data on anatomic-physiological peculiarities of specific human being. Obtained results are well correlated with the physiological experimental data. Mathematical model of tension dynamics of respiratory gas is developed using ideas of compartmental modeling [1, 2], i.e. describes the mass carry process of respiratory gases among functionally connected but relatively autonomous compartments. Model represents the system of ordinary nonlinear differential equation whose number depends on the degree of detailing of structural scheme of the object (number of tissue regions, portions of blood washing the tissue etc.), describing the dynamics of oxygen tension p (hereinafter the first index at variable — (1)), carbon dioxide (2) and nitrogen (3) in structural compartments of the system — respiratory tract (second index at variable — (rw)), alveolar space (А), blood of pulmonary capillaries (LC), arterial blood (а), blood of tissue capillaries (cti), tissue  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 24 reservoirs (ti ) and mixed venous blood ( − v ). As distinct from existing models of gas mass transfer in the organism this model presents dynamics of gas partial pressures in alveolar space during the breathing cycle including phases of inhalation, exhalation and pause; process of gas diffusion through air-blood barrier, as well as through capillary-tissue membranes taking into account their structural and functional peculiarities have been considered [3]. In addition tissue reservoirs are differentiated and peculiarities of energy exchange of tissues of brain, heart muscle, liver, kidneys, skeletal muscles, skin and other organism's tissues have been considered. Presented below equations of mathematical model of object have been obtained on the basis of continuity and material balance principles (conservation of mass) using known empiric physiological dependencies among variables. Model equations are described as follows. Let p1, p2, p3 — partial pressures of oxygen, carbon dioxide and nitrogen in inhaled air and p1+ p2+ p3= B, where В — total barometric pressure. Then dynamics of partial pressures of gases in respiratory tract during breathing cycle can be presented as follows: ],~~[ τ 11 1 1 rw rw pp Vn V d dp rw −= • (1) ]~~[ τ 22 2 2 rw rw pp Vn V d dp rw −= • , (2) ]~~[ τ 33 3 3 rw rw pp Vn V d dp rw −= • , (3) where rwV — volume of respiratory tract (generalized reservoir), V& — ventilation depending of values of respiratory volume and duration of breathing cycle; n1, n2, n3 — conversion factors for respiratory gases and nitrogen respectively, and 3,1 ),( ),( , ~ , = ≤ >     = • • j OV OV p p p rwj j j , .3,1 ),( ),( , ,~ = ≤ >     = • • j OV OV p p p A rw rw j j j (4) During modeling of partial pressures of gases in alveolar space with volume VL it is necessary to take into account gas flow through air-blood barrier )( LCALC jjLCjj ppSDG −= , (5)  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 25 where Dj — coefficients characterizing permeability of gases through air-blood barrier, SLC — area of gas mass transfer surface. Then ] τ ~[ )( 1 τ 11111 1 1 d dVpnGpVn VVnd dp L rwL ALCrw A −− − = • , (6) ] τ ~[ )( 1 τ 22222 2 2 d dVpnGpVn VVnd dp L rwL ALCrw A −− − = • , (7) ] τ ~[ )( 1 τ 33333 3 3 d dVpnGpVn VVnd dp L rwL ALCrw A −− − = • . (8) It is assumed that lung volume during breathing cycle is changed according to     − −+ = pauseatV exhaleandinhaleat t DVV L c L L ),τ( ,)π2ττcos1( 2 )τ( 0 0 0 (9) where D — respiratory volume of lungs, τ0 — start of breathing cycle, tc — its duration. It is also assumed that τd dVV L= • (10) (V& = 0 during pause). As it can be seen from the equations (1)–(8), gas diffusion from respiratory tract to alveolar space during pause is not considered. Equations of blood gas tension dynamics are developed taking into account biophysical and chemical properties of blood. It is known that oxygen and carbon dioxide can be transported with blood flow both physically dissolved in blood plasma, and attached to hemoglobin (and CO2 is bound also with buffer bases), while nitrogen is transported only in dissolved form. Changes of blood gas tension in pulmonary capillaries can be influenced by gas flows from alveolar space LCjG (5), from mixed venous blood and gas flow passing with circulating blood into arterial channel. In addition model takes into account presence of pulmonary shunt having volumetric speed of blood flow Qs. Equations of dynamics of blood gas tension in pulmonary capillaries in connection with above mentioned are as follows: )],ηη)((γ ))((α[ ) ∂ η∂γα( 1 τ 1 111 1 1 1 LCvs s LC LC QQHbG ppQQ p HbVd dp LC LCv LC LC −−++ +−− + = (11)  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 26 ], τ η γ)(α)( )))((γ γ))η1()η1[((( ) ∂ ∂γα( 1 τ 2222 2 2 2 d dHbVGQQpp QQzzBH Hbzz p zBHVd dp LC LCS SLCvBH LCLCvvLC BHLC LCLCv LC LC ++−−+ +−−+ +−−− + = (12) )](α)(α[ α 1 τ 33333 3 3 ss LC QQpGQQp Vd dp LCLCv LC −−+−= . (13) For more precise description of gas mass carry process in pulmonary capillaries in the section «alveoli — pulmonary capillaries blood» the structure of pulmonary capillaries can be differentiated, considering the elements of pulmonary artery, capillary network itself and pulmonary vein. In the equations (11)–(13) VLC — volume of blood of pulmonary capillaries, Q — volume velocity of system blood flow, α1, α2, α3 — coefficients of gas solubility in blood; γ, γBH — physiological constants, determined in Haldane and Verigo-Bohr equations; η — hemoglobin saturation rate (its concentration will be denoted as Hb) with oxygen, determined by empiric dependency )12,0exp(75,0)052,0exp(75,11η 11 LCLC pmpm LCLCLC −+−−= . (14) At mLC = const dependency of hemoglobin saturation rate Hb with oxygen has a shape of S-curve, that is approximated by the expression (14). But it is known, that alteration of pH value in blood causes shifting of the curve of oxyhemoglobin dissociation (Bohr effect). Carbon dioxide facilitates displacement of oxygen from oxyhemoglobin, and shape and location of dissociation curve are changed depending on CO2 tension, namely, with its increasing affinity of hemoglobin with oxygen is decreasing and dissociation curve is shifted to the right, i.e. oxyhemoglobin dissociation is increased. Following equations serve as mathematical interpretation of Bohr effect in the model 0, 25( 7,4) 1,LC LCm pH= − + (15) α lg1,6 22 LCp BHpHLC += . (16) Dependency (16) is Henderson-Hasselbach equation that is used for determination of correlation among blood acidity (pH), tension of CO2 in blood and concentration of hydrocarbonates that are buffer bases (BH). Saturation rate of buffer bases of blood with carbon dioxide is expressed by the Michaelis-Menten formula 352 2 + = LC LC P p ZLC . (17)  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 27 Equations (1)–(17) describe first three links of controlled system — change of partial pressures of gases in respiratory tract, alveoli and blood of pulmonary capillaries. The blood saturated in pulmonary capillaries is flowing in the arterial channel with volume velocity (Q–Qs), and, as a result of pulmonary shunt, — mixed venous blood is flowing with volume velocity Qs, while the arterial blood is flowing out with volume velocity Q. Taking into account conditions of continuity and material balance the following can be written ],ηγηγη)(γ αα )(α[ ) ∂ η∂γα( 1 τ 1111 11 1 1 1 avsLCs s s a a HbQHbQQQHb QppQ pQQ p HbVd dp av LC a a −+−+ +−+ +− + = (18) ], τ ηγ))( (αγ))( (γ))η1())(η1( )η1[(( ) ∂ ∂γα( 1 τ 22 22 2 2 2 d dHbVQppQQ pQBHQzQQz QzHbQzQQ zQ p zBHVd dp a as sBHasLC svzaLCsLC vsva BHa aLC v a a a +−−+ ++−−+ ++−−−−+ +− + = (19) ], τ ηγ))( (αγ))( (γ))η1())(η1( )η1[(( ) ∂ ∂γα( 1 τ 22 22 2 2 2 d dHbVQppQQ pQBHQzQQz QzHbQzQQ zQ p zBHVd dp a as sBHasLC svzaLCsLC vsva BHa aLC v a a a +−−+ ++−−+ ++−−−−+ +− + = ]αα)(α[ α 1 τ 333333 3 3 avLC a QppQpQQ Vd dp ss a −+−= . (20) Let's express changes in organism gas tensions in tissue capillaries blood (cti) and tissues (ti). Tissue reservoirs are considered on the level of organs and tissues, namely, brain, heart, liver, kidneys, skeletal muscles (sk.m.), skin, adipose and bone tissues (let m — number of tissue reservoirs). Krogh model has been chosen as a model of tissue reservoir [4, 5], where capillary network of tissues or organs is represented with one generalized cylindrical capillary in the inlet of whose arterial blood is coming. During flowing of blood along the capillary respiratory exchange between capillary blood and tissue is occurring through its wall. Then blood is flowing in the vein. In the same way as other equations of mathematical model, equations of  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 28 dynamics pO2, pCO2, pN2 in blood of tissue capillaries and tissue are compiled on the basis of principles of materiality of balance and flow continuity. )]ηη(γ)(α[ ) ∂ η∂ γα( 1 τ 1111 1 1 1 iiitictai ict i i ict ctatt ct ct HbQGppQ p HbV d dp −+−− + = (21) ], τ η γγ)η1(γ)η1( )(γ )(α[ ) ∂ ∂ γα( 1 τ 2222 2 2 2 d d HbVzHbQzHbQ zzBHQ GppQ p z BHVd dp i iiiii ii itictai ict i i ict ct ctcttctata ctaBHt t ct BHct +−−−+ +−+ +−− + = (22) ].αα[ α 1 τ 33333 3 3 itiicti i ict GQpQp Vd dp tta ct −−= (23) Rate of intensity of metabolic process in tissue regions of this model is characterized by the rate of oxygen consumption it q1 and rate of carbon dioxide evolution it q2 . It is considered, that dependence of oxygen consumption rate it q1 in tissues of brain, kidneys and heart is determined by equation of Michaelis- Menten: it it itit pR p qq 1 10 11 )τ( + = , and in peripheral tissues, including skeletal muscles, by correlation 2 0 0 11 η )τ(η )τ(         = i i itit ct сtqq , (24) where 0 1 it q — consumption rate of O2 at given intensity of load under normal conditions of external environment, R — const, 0η ict — saturation rate of Hb in blood with oxygen in these conditions, and )τ(η iсt — saturation rate of Hb in changed conditions of experiment. In addition, for definiteness it is considered that consumption rate of O2 in heart muscles is linear function of the value of volume velocity of systemic blood flow ,βα..1 += Qq msk  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 29 ,12 itiit qnq t= (25) where itn — respiratory coefficient. In this connection dynamics of gas tension in tissue reservoirs in normal physiological organism may be described by the equations )( ) ∂ η∂ γα( 1 τ 11 1 1 1 itit it i iiti it qG p MbVd dp Mb iMbt − + = , (26) ),( α 1 τ 22 2 2 itit iti it Gq Vd dp t += (27) it iit it G Vd dp t 3 3 3 α 1 τ = , (28) where )12,0exp(1η 1 iti pMb −−= — saturation rate of myoglobin with oxygen, 1η0 ≤≤ iMb , iMbγ — coefficient characterizing maximal amount of O2, that can be attached with 1 g of myoglobin (Mbi). The link of breathing system «blood — tissue reservoirs» can be detailed at the account of both differentiation of tissue reservoirs and modeling of transport and exchange functions of blood in arterioles, tissue capillaries and venules. To conclude the model it is necessary just to present equations representing the dynamics of gas tension in mixed venous blood: )),ηη(γ)(α[ ) ∂ η∂ γα( 1 τ 1 1 1 11 1 1 1 ∑∑ == −+− + = m i vctt m i t v v QQHbQppQ p HbVd dp iivicti v v (29) ], τ η γ)(γ ))η1()η1((γ )(α[ ) ∂ ∂ γα( 1 τ 1 1 2 1 22 2 2 2 d d HbVQzzQBH QzzQHb QppQ p z BHVd dp v v m i vcttBH m i vvctctt m i t v BHv ii iii victi v v +−+ +−−−+ +− + = ∑ ∑ ∑ = = = (30) ∑ = −= m i t v QpQp Vd dp viict v 1 3333 3 3 ).αα( α 1 τ (31)  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 30 It is obvious that equations (1)–(31) represent dynamics of gas mass transfer in organism in simplified form. However the principle of model development allows the possibility to consider also arteriovenous anastomosis and model gas tension on the walls of vessels — capillary, change of blood volume in tissue capillaries, enabling to solve different tasks of theoretical and applied physiology. The model is developed for average statistical (reference) person and it uses the known experimental data on diffusion coefficients and gas permeability through the membranes separating the medium, on other parameters characterizing gas transport in the organism and metabolic processes taking place in tissues. It would be important to clarify the role of these parameters in stabilization of transients occurring during violation of equilibrium state caused by changes of internal or external conditions. Transients caused by changes of composition of inhaled air, transition from steady state to load and vice versa, during pressure difference and process of the control of level of organism's gas homeostasis have been studies. Data obtained in other studies [6, 7] have been accounted during the work with the model. On the model described above the simulation of functional self-organization of physiological breathing system under conditions of highlands has been carried out. It was assumed that before experiments the gas mass transfer system in organism was in stationary state, breathing gas normoxic (21 % O2 and 79 % N2). Calculations have been executed for normal physiological data of person weighting 75 kg, volume velocity of oxygen consumption under calm conditions q = 4,3 ml/sec, Q = 96 ml/sec, Hb=0,14 g/ml, BH=0,479 g/ml, D=550 ml, tc = 4 sec. To determine initial status of the system in simulation of arbitrary extreme situation it was necessary to simulate first calm conditions under normal external conditions itQ , it p1 , and it p2 since experimental determination of initial values is complicated. Therefore starting from certain determined approximated state of the system (1)–(31) trajectories it p1 and it p2 have been put in steady regime for time T. Calculations have been executed during time interval Т = 3000 sec with simulation time-step ∆τ = 0,01. Air pressure at sea level everywhere on the globe is on average close to one atmosphere. Going up from the see level air pressure is decreasing; respectively its density is also decreasing: air becomes more and more rarefied, i.e. amount of oxygen in inhaled air is decreased. Therefore for simulation of highlands conditions known data of air pressure and oxygen content at different heights have been taken [8]. In present work computer analysis of model at different heights has been carried out: 1 km (Bо = 674 mm Hg), 2 km (Bо = 596 mm Hg), 3 km (Bо = 526 mm Hg), 4 km (Bо = 462 mm Hg) with oxygen content in air respectively 18,5 %, 16,2 %, 14,3 %, 12,6 %. At the time zero values of gas tensions in arterial blood and skeletal muscles were taken at normal state, i.e. in calm conditions at sea level. For every height set of experiments have been carried out under following conditions:  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 31 І. Hypoxia in calm state with compensation — increasing of Qsk.m in 2 times, Vinhale in 1,5 times: Vinhale = 800 ml; tc = 4,0 sec; tinhale = texhale = 1,5 sec; Q = 117,1 ml/sec; Qbrain = 14,88; Qheart = 6,135; Q sk.m. = 38,45; Qother tissues = 57,595; q = 4,44 ml/sec; qbrain = 0,632; qheart = 0,4725; qsk.m. = 1,488; qother tissues = 1,849. II. Load hypoxia with compensation — increasing of qsk.m. and Qsk.m. in 2 times, Vinhale in 1,5 times: Vinhale = 800 ml; tc = 4,0 sec; tinhale = texhale = 1,5 sec; Q = 117,1 ml/sec; Qbrain = 14,88; Qheart = 6,135; Qsk.m. = 38,45; Qother tissues = 57,595: q = 5,9292 ml/sec; qbrain = 0,6321; qheart = 0,4725; qsk.m. = 2,9756; qother tissues = 1,849. III. Load hypoxia with compensation — increasing of qsk.m. in 2 times, Qsk.m. in 4 times, Vinhale up to 1000 ml: Vinhale = 1000 ml; tc = 3,0 sec; tinhale = texhale = 1,5 sec; Q = 159,2 ml/sec; Qbrain = 14,88; Qheart = 9,84; Qsk.m. = 76,90; Qother tissues = 57,595; q = 6,2146 ml/sec; qbrain = 0,6321; qheart = 0,7579; qsk.m. = 2,9756; qother tissues = 1,8490. Results of experiments are presented in the table and on figures 1–4. On figures 1–4: row 1 — Hypoxia in calm state with compensation — increasing of Qsk.m. in 2 times, Vinhale in 1,5 times: row 2 — Load hypoxia with compensation — increasing of qsk.m. and Qsk.m. in 2 times, Vinhale in 1,5 times: row 3 — Load hypoxia with compensation — increasing of qsk.m. in 2 times, Qsk.m. in 4 times, Vinhale up to 1000 ml: Fig. 1. Oxygen consumption at height 1 km Fig. 2. Oxygen consumption at height 2 km Comparative analysis of results demonstrates, that with the same values &V and Q levels of paO2 are below normal, and levels of psk.m.O2 , paСО2, psk.m.СО2 are higher, but later on significantly decreasing.  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 32 To approximate gas tension levels to normal values, V& and Qsk.m. have to be significantly higher. Fig. 3. Oxygen consumption at height 3 km Fig. 4. Oxygen consumption at height 4 km Table Results of experiments Vinh=800 ml, tc=4 s, V& =12 l/min, Q=117 ,1 ml/sec, q=4.44 ml/sec I H=1 km B0=674 mm Hg H=2 km B0=596 mm Hg H=3 km B0=526 mm Hg H=4 km B0=462 mm Hg t, c 0 100 2800 0 100 2800 0 100 2800 0 100 2800 q, ml/sec 4.4414 4.6629 4.6912 4.4414 4.2340 4.2052 4.4414 3.7204 3.5163 4.4414 3.2325 2.8227 PaО2, mm Hg 92.9 70.33 73.76 92.9 46.53 45.25 92.9 34.28 30.35 92.9 26.82 21.58 Рsk.m.О2, mm Hg 26.71 35.95 33.46 26.71 30.81 27.71 26.71 25.86 21.41 26.71 21.92 16.33 РaСО2, mm Hg 26.17 34.73 18.40 26.17 34.22 16.61 26.17 33.54 13.93 26.17 32.89 11.21 Рsk.m.СО2, mm Hg 32.03 47.53 22.07 32.03 47.13 19.69 32.03 46.65 16.30 32.03 46.19 12.94 Vinh=800 ml, tc=4 s, V& =12 l/min, Q=117,1 ml/sec, q=5,93 ml/sec II H=1 km B0=674 mm Hg H=2 km B0=596 mm Hg H=3 km B0=526 mm Hg H=4 km B0=462 mm Hg t, c 0 100 2800 0 100 2800 0 100 2800 0 100 2800 q, ml/sec 5.9292 5.5470 5.5540 5.9292 4.8573 4.7243 5.9292 4.1594 3.8328 5.9292 3.5410 3.0263 PaО2, mm Hg 92.9 58.16 60.08 92.9 39.28 37.17 92.9 29.41 25.79 92.9 23.17 18.78 Рsk.m.О2, mm Hg 26.71 25.66 24.08 26.71 21.96 19.61 26.71 18.68 15.48 26.71 16.03 12.13 РaСО2, mm Hg 26.17 36.14 21.81 26.17 35.26 18.66 26.17 34.36 15.18 26.17 33.58 12.01 Рsk.m.СО2, mm Hg 32.03 48.92 27.24 32.03 48.29 22.94 32.03 47.65 18.38 32.03 47.09 14.31 Vinh=1000 ml, tc=3 s, V& =20 l/min, Q=159,2 ml/sec, q=6,21 ml/sec III H=1 km B0=674 mm Hg H=2 km B0=596 mm Hg H=3 km B0=526 mm Hg H=4 km B0=462 mm Hg t, c 0 100 2800 0 100 2800 0 100 2800 0 100 2800 q, ml/sec 6.2146 6.7337 6.7791 6.2146 6.0453 6.0920 6.2146 5.1688 5.0975 6.2146 4.3299 4.0948 PaО2, mm Hg 92.9 67.67 70.52 92.9 43.58 43.83 92.9 31.26 29.45 92.9 23.74 20.91 Рsk.m.О2, mm Hg 26.71 35.12 32.75 26.71 29.29 27.05 26.71 23.53 20.74 26.71 19.04 15.72 РaСО2, mm Hg 26.17 31.00 16.01 26.17 30.43 14.50 26.17 29.70 12.20 26.17 29.00 9.94 Рsk.m.СО2, mm Hg 32.03 40.79 19.13 32.03 39.98 17.09 32.03 38.98 14.13 32.03 38.03 11.20  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 33 CONCLUSIONS Presented results of computer analysis of the model show that hypometabolism is a necessary condition for stabilization of the status of organism during highland hypoxia. Calculations using mathematical model (1)-(33) with hypometabolism mechanism (24) demonstrates that stabilization of the status of the breathing and blood circulation system require less metabolic cost of regulatory mechanism during the work under conditions of highlands. 1. Gray J.S. The multiple factor theory of respiratory regulation. Science. 1946. V.103. P.739–744. 2. Grodins F. Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 1967. Vol. 22, № 2. P.260–276. 3. Bioecomedicine. United information space / edited by V.I. Grytsenko. Kiev: Naukova dumka, 2001. 318 p. (in Russian). 4. Lauer N.V., Kolchinskaya A.Z., Kulikov M.A. Calculation of parameters of organism's oxygen regimes and development of oxygen cascades. Organism's oxygen regime and its regulation. - Kiev: Naukova dumka, 1966, p.16–22 (in Russian). 5. Kolchinskaya A.Z., Man'kovskaya I.N., Misiura A.G. Breathing and oxygen regimes of dolphins' organisms. — Kiev: Naukova dumka, 1980. 332 p. (in Russian). 6. Biloshyts'kyi P. V., Kliuchko O. M., Onopchuk Yu. M. Study of hypoxia issues by Ukrainian scientists in the area of Elbrus mountain. Bulletin of NASU. 2007, no 3–4. P. 44–50 (in Russian). 7. Onopchuk Yu.N., Misiura A.G. Methods of mathematical modeling and control in theoretical research and applied problem solving in sports medicine and physiology. Sports medicine. 2008, no 1. P. 181–188 (in Russian). 8. Table of International Standard Atmosphere. Available at: http://www.vsetabl.ru/154.htm. UDK 519.876 MATHEMATICAL MODELING OF HYPOMETABOLISM PROCESS TO IDENTIFY PECULIARITIES OF HUMAN ORGANISM DURING THE WORK UNDER CONDITION OF HIGHLANDS I.L. Bobriakova V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine Introduction: Hypometaboliс and hypoxic states are in the focus of attention of researchers since organism is often impacted by hypoxic factors, particularly under conditions of highlands, as well as during significant physical loads or some severe pathologic process. Hypoxic or exogenous hypoxia is developed during decreasing of partial pressure of oxygen in inhaled air. During hypoxic hypoxia the arterial oxygen tension, the saturation of hemoglobin with oxygen and its total content in the blood are being decreased. Negative impact can be caused also by hypocapnia, developed as a result of compensatory hyperventilation of lungs. Extreme hypocapnia causes worsening of blood supply to brain and heart (vasoconstriction) and respiratory alkalosis. In this connection, it is interesting to investigate the energy reserves of  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 34 organism and the ways of its strengthening under hypoxic conditions. Problem definition: Investigation of the processes of human organism breathing system self-regulation represents particular scientific area that is being widely developed last years as a result of success in mathematical modelling. However the regulation mechanisms of functional state of human organism under conditions of highland hypoxia are not sufficiently studied yet. Infeasibility of such investigations was related with the difficulties of experimental determination of the several most important parameters and with the absence of adequate mathematical models for dynamics of these processes. The main task of this work consists in investigation of the mechanism of formation of hypometabolic state of human being under conditions of highlands. Mathematical model of functional systems of breathing and blood circulation has been used to analyze this phenomenon on system level. The purpose of this work is to develop and to investigate the mathematical model of hypometabolism, and to develop the software for execution of computing experiments with the model. Results: 1. Developed complex of mathematical model of the gas mass carry process in organism and software is applied for assessment of the dynamics of functional state of human being on conditions of work at highlands. 2. Implemented numerical analysis of the models of respiratory exchange control enables to: • follow dynamics of the main physiological parameters of the model during transient processes and in stationary states; • forecast and quantitatively assess regulatory reactions of the organism under given disturbances; • carry out individualization of model developments on condition of availability of array of data on anatomic-physiological peculiarities of specific human being. Obtained results are well correlated with the physiological experimental data. Conclusions: Presented results of computer analysis of the model demonstrate that hypometabolism is a pre-requisite for stabilization of organism's state under highland hypoxia. Calculations on mathematical model of the process of gas mass transfer with hypometabolism mechanism demonstrate that stabilization of breathing and blood circulation system state require less metabolic cost of regulatory mechanisms under highland conditions. Keywords: mathematical model, breathing and blood circulation system, gas tensions, hypoxia, hypometabolism, disturbing impacts, computing experiments. 1. Gray J.S. The multiple factor theory of respiratory regulation. Science. 1946. V.103. P.739–744. 2. Grodins F. Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 1967. Vol. 22, № 2. P.260–276. 3. Bioecomedicine. United information space / edited by V.I. Grytsenko. Kiev: Naukova dumka, 2001. 318 p. (in Russian).  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178 35 4. Lauer N.V., Kolchinskaya A.Z., Kulikov M.A. Calculation of parameters of organism's oxygen regimes and development of oxygen cascades. Organism's oxygen regime and its regulation. - Kiev: Naukova dumka, 1966, p.16–22 (in Russian). 5. Kolchinskaya A.Z., Man'kovskaya I.N., Misiura A.G. Breathing and oxygen regimes of dolphins' organisms. — Kiev: Naukova dumka, 1980. 332 p. (in Russian). 6. Biloshyts'kyi P. V., Kliuchko O. M., Onopchuk Yu. M. Study of hypoxia issues by Ukrainian scientists in the area of Elbrus mountain. Bulletin of NASU. 2007, no 3–4. P. 44–50 (in Russian). 7. Onopchuk Yu.N., Misiura A.G. Methods of mathematical modeling and control in theoretical research and applied problem solving in sports medicine and physiology. Sports medicine. 2008, no 1. P. 181–188 (in Russian). 8. Table of International Standard Atmosphere. Available at: http://www.vsetabl.ru/154.htm. Получено 29.09.2014  I.L. Bobriakova, 2014 ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 178