Чебишовське наближення за неповною системою степеневих функцій

Розглянуто задачу чебишовського (рiвномiрного, мiнiмаксного) наближення функцiй полiномом i рацiональним виразом за неповною системою степеневих функцiй. Встановлено необхiднi й достатнi умови iснування такої апроксимацiї. Одержано характеристичнi властивостi чебишовської апроксимацiї функцiй полiно...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Скопецький, В.В., Малачівський, П.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2009
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/8469
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Чебишовське наближення за неповною системою степеневих функцій / В.В. Скопецький, П.С. Малачiвський // Доп. НАН України. — 2009. — № 4. — С. 39-44. — Бібліогр.: 11 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглянуто задачу чебишовського (рiвномiрного, мiнiмаксного) наближення функцiй полiномом i рацiональним виразом за неповною системою степеневих функцiй. Встановлено необхiднi й достатнi умови iснування такої апроксимацiї. Одержано характеристичнi властивостi чебишовської апроксимацiї функцiй полiномом i рацiональним виразом за неповною системою базисних функцiй iз найменшою абсолютною й вiдносною похибкою. Запропоновано алгоритми для визначення параметрiв таких наближень. The problem of the Chebyshevian (uniform, minimax) approximation to a given function by a polynomial and a rational expression based on an incomplete system of basic power functions is considered. Both necessary and sufficient conditions of existence for such an approximation are established. The alternance property of polynomial and rational Chebyshevian approximations based on the aforementioned system of functions for both absolute and relative minimal errors are discussed. The algorithm for calculating the parameters of such an approximation is proposed.
ISSN:1025-6415