Реоптимизация задачи о минимальном вершинном покрытии k-равномерного гиперграфа
Для реоптимизации задачи о минимальном вершинном покрытии k-равномерного гиперграфа при добавлении h вершин (h = O(log n), n – общее число вершин) и некоторого числа гиперребер приводится полиномиальный (2–1/k) – приближенный алгоритм. При выполнении уникальной игровой гипотезы (UGC) аппроксимационн...
Gespeichert in:
| Veröffentlicht in: | Компьютерная математика |
|---|---|
| Datum: | 2012 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/84700 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Реоптимизация задачи о минимальном вершинном покрытии k-равномерного гиперграфа / В.А. Михайлюк // Компьютерная математика: сб. науч. тр. — 2012. — № 1. — С. 158-166. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Для реоптимизации задачи о минимальном вершинном покрытии k-равномерного гиперграфа при добавлении h вершин (h = O(log n), n – общее число вершин) и некоторого числа гиперребер приводится полиномиальный (2–1/k) – приближенный алгоритм. При выполнении уникальной игровой гипотезы (UGC) аппроксимационное отношение 2–1/k является пороговым в семействе параметрических полиномиальных реоптимизационных алгоритмов.
Для реоптимізації задачі про мінімальне покриття k -рівномірного гіперграфа при добавленні h вершин ( h = O(logn), n - загальна кількість вершин) і деякого числа гіперребер наводиться поліноміальний (2 -1/ k) -наближений алгоритм. При виконанні унікальної ігрової гіпотези (UGC) апроксимаційне відношення 2 -1/ k є пороговим в сімействі параметричних поліноміальних реоптимізаційних алгоритмів.
For reoptimization of the problem of minimum vertex cover on k-uniform hypergraph by adding of h vertices ( h = O(log n), n is a total number of vertices) and a number of hyper-edges, the polynomial (2 -1/ k) - approximation algorithm is presented. If the unique game conjecture (UGC) is true, then the approximation ratio 2 -1/ k is a threshold in the family of parametric polynomial reoptimization algorithms.
|
|---|---|
| ISSN: | ХХХХ-0003 |