Применение "бесполезных" ходов при решении задачи о покрытии

Предложена модификация алгоритма случайного повторного локального поиска для решения задачи о покрытии с применением «бесполезных» ходов, что позволяет расширить поисковые возможности алгоритма. Эффективность разработанного алгоритма подтверждена экспериментально при решении задач большой размерност...

Full description

Saved in:
Bibliographic Details
Published in:Компьютерная математика
Date:2014
Main Author: Шило, П.В.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/84820
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Применение "бесполезных" ходов при решении задачи о покрытии / П.В. Шило // Компьютерная математика. — 2014. — № 1. — С. 150-158. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Предложена модификация алгоритма случайного повторного локального поиска для решения задачи о покрытии с применением «бесполезных» ходов, что позволяет расширить поисковые возможности алгоритма. Эффективность разработанного алгоритма подтверждена экспериментально при решении задач большой размерности, а также сравнением полученных результатов с известными. С помощью предложенного алгоритма найдено новое рекордное решение. Запропонована модифікація алгоритму випадкового повторного локального пошуку для розв'язання задачі про покриття із застосуванням «даремних» ходів, що дозволяє розширити пошукові можливості алгоритму. Ефективність розробленого алгоритму підтверджена експериментально при розв'язанні задач великої розмірності, а також порівнянням отриманих результатів із відомими. За допомогою запропонованого алгоритму знайдено новий рекордний розв'язок. In this paper, the modification of a new algorithm based on the iterated random local search for Minimum Cardinality Set Covering Problem (MCSCP) with “useless” moves is proposed that makes it possible to increase its search capabilities. The efficiency of the algorithm is confirmed experimentally by solving problems of high dimension and comparing the results with the known ones. The proposed algorithm improves the new record solution for 1 benchmark instance widely used in the literature.
ISSN:ХХХХ-0003