Двумерная тележка: вариационная оценка снизу функции Беллмана

В одномерном случае задача о тележке — это известный тестовый пример применения принципа максимума. В двумерном случае, к которому сводится трехмерный и, вообще, n-мерный, задача не имеет аналитического решения, ее приходится решать численно. Здесь возникает проблема локализации неизвестных, одним и...

Full description

Saved in:
Bibliographic Details
Published in:Теорія оптимальних рішень
Date:2003
Main Author: Руденко, А.В.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/84866
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Двумерная тележка: вариационная оценка снизу функции Беллмана / А.В. Руденко // Теорія оптимальних рішень: Зб. наук. пр. — 2003. — № 2. — С. 135-148. — Бібліогр.: 5 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:В одномерном случае задача о тележке — это известный тестовый пример применения принципа максимума. В двумерном случае, к которому сводится трехмерный и, вообще, n-мерный, задача не имеет аналитического решения, ее приходится решать численно. Здесь возникает проблема локализации неизвестных, одним из которых является оптимальное время T. В одномірному випадку задача про візок - відомий тестовий приклад застосування принципу максимуму. У двовимірному випадку (до якого зводиться тривимірний і, взагалі, n-мірний) задача не має аналітичного розв‘язку, і її треба розв‘язувати чисельно. Тоді виникає проблема локалізації невідомих параметрів, одним із яких є оптимальний час T. The one-dimensional tram problem is known as a first example of how maximum principle works. However, no analytical solution to this problem exists in 2D case (3-D and n-D cases being reduced to), and it has to be solved numerically. Here, a problem of localization arises as to unknowns one of them being an optimal time T.
ISSN:XXXX-0013