Свойства и сложность задач двухуровневого программирования
It is proved that a solution of linear bilevel programming problem is achieved at an extreme point of its constraint region. Based on this property, the algorithm for search a problem solution is suggested. It is demonstrated the mapping of follower’s responses is a polyhedral one. It is showed that...
Saved in:
| Date: | 2006 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2006
|
| Series: | Теорія оптимальних рішень |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/84961 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Свойства и сложность задач двухуровневого программирования / В.М. Горбачук, Г.А. Шулинок // Теорія оптимальних рішень: Зб. наук. пр. — 2006. — № 5. — С. 106-115. — Бібліогр.: 5 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | It is proved that a solution of linear bilevel programming problem is achieved at an extreme point of its constraint region. Based on this property, the algorithm for search a problem solution is suggested. It is demonstrated the mapping of follower’s responses is a polyhedral one. It is showed that in general case a set of problem solutions may not be connected. The NP-completeness of problem is proved. |
|---|