Про умови асимптотичної стійкості в моделях росту патологічних утворень на основі динаміки Ріхарда

Розглянуто модель розвитку загального патологічного утворення на основі динаміки Ріхарда. Побудовано математичну модель росту патологічного утворення з урахуванням імунної відповіді. Перше рівняння описує зміну кількості клітин патологічного утворення в організмі людини. Друге рівняння описує ріст п...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Марценюк, В.П., Багрий-Заяць, О.А.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2013
Schriftenreihe:Системні дослідження та інформаційні технології
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/85102
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Про умови асимптотичної стійкості в моделях росту патологічних утворень на основі динаміки Ріхарда / В.П. Марценюк, О.А. Багрий-Заяць // Системні дослідження та інформаційні технології. — 2013. — № 3. — С. 118-129. — Бібліогр.: 6 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглянуто модель розвитку загального патологічного утворення на основі динаміки Ріхарда. Побудовано математичну модель росту патологічного утворення з урахуванням імунної відповіді. Перше рівняння описує зміну кількості клітин патологічного утворення в організмі людини. Друге рівняння описує ріст плазматичних клітин. Третє рівняння описує зміну кількості антитіл, які реагують із рецептором клітин патологічного утворення. Четверте рівняння описує ступінь пошкодження органу. Побудовано конструктивні умови асимптотичної стійкості для моделі розвитку загального патологічного утворення на основі динаміки Ріхарда. Досліджено умови локальної асимптотичної стійкості стаціонарного стану, що відповідає відсутності захворювання. Отримано достатні умови асимптотичної стійкості рівноважного стану моделі розвитку патологічного утворення в термінах коефіцієнтів характеристичного рівняння. Проведено чисельний аналіз розробленої моделі, а отримані математичні результати проаналізовано для конкретних параметрів моделі розвитку патологічного утворення.