Detection and recognition of objects on images based on MKV-classifiers

In article the algorithm of combination of the binary properties widely used in practice at system engineering of the automatic analysis of the visual information, in the form of the MKV-classifier is offered. Problems of training and using of MKV- classifiers for the decision of detection problem...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Искусственный интеллект
Дата:2013
Автор: Murygin, K.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/85212
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Detection and recognition of objects on images based on MKV-classifiers / K.V. Murygin // Искусственный интеллект. — 2013. — № 1. — С. 209–217. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-85212
record_format dspace
spelling Murygin, K.V.
2015-07-21T19:09:24Z
2015-07-21T19:09:24Z
2013
Detection and recognition of objects on images based on MKV-classifiers / K.V. Murygin // Искусственный интеллект. — 2013. — № 1. — С. 209–217. — Бібліогр.: 6 назв. — англ.
1561-5359
https://nasplib.isofts.kiev.ua/handle/123456789/85212
004.89, 004.93
In article the algorithm of combination of the binary properties widely used in practice at system engineering of the automatic analysis of the visual information, in the form of the MKV-classifier is offered. Problems of training and using of MKV- classifiers for the decision of detection problems and recognition of objects are considered. The offered algorithms of training allow to generate more effective recognizing rules in comparison with known algorithm AdaBoost, in particular it is essential to reduce number of used properties at identical classifying ability, at the expense of more exact description of position of objects in feature space. Possibility of representation of the MKV- classifier in the form of a decisions tree allows increasing essentially of computing efficiency of classification process.
У статті пропонується алгоритм об’єднання бінарних властивостей, широко використовуваних на практиці при розробці систем автоматичного аналізу візуальної інформації, у вигляді МКВ-класифікатора. Розглядаються питання навчання й використання МКВ-класифікаторів для вирішення завдань виявлення й розпізнавання об’єктів. Запропоновані алгоритми навчання дозволяють генерувати більш ефективні вирішуючи правила в порівнянні з відомим алгоритмом AdaBoost, зокрема істотно скоротити число використовуваних властивостей при однаковій якості класифікації за рахунок більш точного опису положення об’єктів у просторі ознак. Можливість представлення МКВ-класифікатора у вигляді дерева рішень дозволяє істотно збільшити обчислювальну ефективність процесу класифікації.
В статье предлагается алгоритм объединения бинарных свойств, широко используемых на практике при разработке систем автоматического анализа визуальной информации, в виде МКВ-классификатора. Рассматриваются вопросы обучения и использования МКВ-классификаторов для решения задач обнаружения и распознавания объектов. Предложенные алгоритмы обучения позволяют генерировать более эффективные решающие правила по сравнению с известным алгоритмом AdaBoost, в частности существенно сократить число используемых свойств при одинаковой классифицирующей способности, за счет более точного описания положения объектов в пространстве признаков. Возможность представления МКВ-классификатора в виде дерева решений позволяет существенно увеличить вычислительную эффективность процесса классификации.
en
Інститут проблем штучного інтелекту МОН України та НАН України
Искусственный интеллект
Нейронные сети и нейросетевые технологии. Информационная безопасность ИС
Detection and recognition of objects on images based on MKV-classifiers
Виявлення та розпізнавання об’єктів на зображеннях на основі МКВ-класифікатора
Обнаружение и распознавание объектов на изображениях на основе МКВ-классификатора
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Detection and recognition of objects on images based on MKV-classifiers
spellingShingle Detection and recognition of objects on images based on MKV-classifiers
Murygin, K.V.
Нейронные сети и нейросетевые технологии. Информационная безопасность ИС
title_short Detection and recognition of objects on images based on MKV-classifiers
title_full Detection and recognition of objects on images based on MKV-classifiers
title_fullStr Detection and recognition of objects on images based on MKV-classifiers
title_full_unstemmed Detection and recognition of objects on images based on MKV-classifiers
title_sort detection and recognition of objects on images based on mkv-classifiers
author Murygin, K.V.
author_facet Murygin, K.V.
topic Нейронные сети и нейросетевые технологии. Информационная безопасность ИС
topic_facet Нейронные сети и нейросетевые технологии. Информационная безопасность ИС
publishDate 2013
language English
container_title Искусственный интеллект
publisher Інститут проблем штучного інтелекту МОН України та НАН України
format Article
title_alt Виявлення та розпізнавання об’єктів на зображеннях на основі МКВ-класифікатора
Обнаружение и распознавание объектов на изображениях на основе МКВ-классификатора
description In article the algorithm of combination of the binary properties widely used in practice at system engineering of the automatic analysis of the visual information, in the form of the MKV-classifier is offered. Problems of training and using of MKV- classifiers for the decision of detection problems and recognition of objects are considered. The offered algorithms of training allow to generate more effective recognizing rules in comparison with known algorithm AdaBoost, in particular it is essential to reduce number of used properties at identical classifying ability, at the expense of more exact description of position of objects in feature space. Possibility of representation of the MKV- classifier in the form of a decisions tree allows increasing essentially of computing efficiency of classification process. У статті пропонується алгоритм об’єднання бінарних властивостей, широко використовуваних на практиці при розробці систем автоматичного аналізу візуальної інформації, у вигляді МКВ-класифікатора. Розглядаються питання навчання й використання МКВ-класифікаторів для вирішення завдань виявлення й розпізнавання об’єктів. Запропоновані алгоритми навчання дозволяють генерувати більш ефективні вирішуючи правила в порівнянні з відомим алгоритмом AdaBoost, зокрема істотно скоротити число використовуваних властивостей при однаковій якості класифікації за рахунок більш точного опису положення об’єктів у просторі ознак. Можливість представлення МКВ-класифікатора у вигляді дерева рішень дозволяє істотно збільшити обчислювальну ефективність процесу класифікації. В статье предлагается алгоритм объединения бинарных свойств, широко используемых на практике при разработке систем автоматического анализа визуальной информации, в виде МКВ-классификатора. Рассматриваются вопросы обучения и использования МКВ-классификаторов для решения задач обнаружения и распознавания объектов. Предложенные алгоритмы обучения позволяют генерировать более эффективные решающие правила по сравнению с известным алгоритмом AdaBoost, в частности существенно сократить число используемых свойств при одинаковой классифицирующей способности, за счет более точного описания положения объектов в пространстве признаков. Возможность представления МКВ-классификатора в виде дерева решений позволяет существенно увеличить вычислительную эффективность процесса классификации.
issn 1561-5359
url https://nasplib.isofts.kiev.ua/handle/123456789/85212
citation_txt Detection and recognition of objects on images based on MKV-classifiers / K.V. Murygin // Искусственный интеллект. — 2013. — № 1. — С. 209–217. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT muryginkv detectionandrecognitionofobjectsonimagesbasedonmkvclassifiers
AT muryginkv viâvlennâtarozpíznavannâobêktívnazobražennâhnaosnovímkvklasifíkatora
AT muryginkv obnaruženieiraspoznavanieobʺektovnaizobraženiâhnaosnovemkvklassifikatora
first_indexed 2025-12-07T21:08:58Z
last_indexed 2025-12-07T21:08:58Z
_version_ 1850885263784411136