Поиск программных инвариантов в виде полиномов

Представлено решение проблемы поиска инвариантов программ в виде полиномиальных зависимостей методом верхней аппроксимации. Этот итерационный метод, с успехом примененный к программам над абсолютно свободными алгебрами и векторными пространствами данных, адаптирован для кольца полиномов. Множество...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2013
1. Verfasser: Максимец, А.Н.
Format: Artikel
Sprache:Russian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/85891
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Поиск программных инвариантов в виде полиномов / А.Н. Максимец // Доповiдi Нацiональної академiї наук України. — 2013. — № 9. — С. 44–50. — Бібліогр.: 12 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Представлено решение проблемы поиска инвариантов программ в виде полиномиальных зависимостей методом верхней аппроксимации. Этот итерационный метод, с успехом примененный к программам над абсолютно свободными алгебрами и векторными пространствами данных, адаптирован для кольца полиномов. Множество инвариантов в этом случае представляется в виде идеала кольца полиномов. Решены задачи о соотношениях и о пересечении множеств инвариантов с использованием базисов Гребнера при условии невырожденности оператора присваивания. Наведено рiшення проблеми пошуку iнварiантiв програм у виглядi полiномiальних залежностей методом верхньої апроксимацiї. Цей iтерацiйнний метод, вдало застосований для програм з абсолютно вiльними алгебрами i векторними просторами даних, адаптований для кiльця полiномiв. Множина iнварiантiв в цьому випадку являє собою iдеал кiльця полiномiв. Розв’язанi задачi про спiввiдношення i про перетин множин iнварiантiв з використанням базисiв Грьобнера при умовi невиродженостi оператора присвоювання. A solution of the polynomial invariant generation problem for programs is presented. The iteration upper approximation method which was successfully applied to free algebras is adopted for a polynomial ring. The set of invariants is interpreted as an ideal over a polynomial ring. The solutions of the relationship and intersection problems are proposed. An intersection of Gröbner bases is applied to solve the intersection problem. The inverse obligatory is applied to solve the relationship problem.
ISSN:1025-6415