Обобщенно разрешимые AFF-группы
Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Оп...
Saved in:
| Published in: | Доповіді НАН України |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Видавничий дім "Академперіодика" НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/86180 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-86180 |
|---|---|
| record_format |
dspace |
| spelling |
Дашкова, О.Ю. 2015-09-09T16:54:47Z 2015-09-09T16:54:47Z 2013 Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. 1025-6415 https://nasplib.isofts.kiev.ua/handle/123456789/86180 512.544 Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Описана структура AFF-группы G в случае, когда G — конечно порожденная разрешимая группа и R-модуль A/CA(G) бесконечен. Дослiджено RG-модуль A такий, що R — асоцiативне кiльце, CG(A) = 1, та кожна власна пiдгрупа H групи G, для якої R-модуль A/CA(H) є нескiнченним, скiнченно породжена. Група G, яка задовольняє цi умови, називається AFF-групою. Доведено, що локально розв’язна AFF-група є гiперабелевою. Описано структуру AFF-групи G у випадку, коли G є скiнченно породженою розв’язною групою та R-модуль A/CA(G) є нескiнченним. We study an RG-module A such that R is an associative ring, CG(A) = 1, and each proper subgroup H of G with infinite A/CA(H) is finitely generated. The group G under consideration is called an AFF-group. It is proved that a locally soluble AFF-group is hyper-Abelian. We describe the structure of an AFF-group G such that G is a finitely generated soluble group, and R–module A/CA(G) is infinite. ru Видавничий дім "Академперіодика" НАН України Доповіді НАН України Математика Обобщенно разрешимые AFF-группы Узагальнено розв’язнi AFF-групи AFF-groups soluble in the extended sense Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Обобщенно разрешимые AFF-группы |
| spellingShingle |
Обобщенно разрешимые AFF-группы Дашкова, О.Ю. Математика |
| title_short |
Обобщенно разрешимые AFF-группы |
| title_full |
Обобщенно разрешимые AFF-группы |
| title_fullStr |
Обобщенно разрешимые AFF-группы |
| title_full_unstemmed |
Обобщенно разрешимые AFF-группы |
| title_sort |
обобщенно разрешимые aff-группы |
| author |
Дашкова, О.Ю. |
| author_facet |
Дашкова, О.Ю. |
| topic |
Математика |
| topic_facet |
Математика |
| publishDate |
2013 |
| language |
Russian |
| container_title |
Доповіді НАН України |
| publisher |
Видавничий дім "Академперіодика" НАН України |
| format |
Article |
| title_alt |
Узагальнено розв’язнi AFF-групи AFF-groups soluble in the extended sense |
| description |
Изучен RG-модуль A такой, что R — ассоциативное кольцо, CG(A) = 1, и любая собственная подгруппа H группы G, для которой R-модуль A/CA(H) бесконечен, конечно
порождена. Группа G, удовлетворяющая заданным условиям, называется AFF-группой. Доказано, что локально разрешимая AFF-группа гиперабелева. Описана структура
AFF-группы G в случае, когда G — конечно порожденная разрешимая группа и R-модуль A/CA(G) бесконечен.
Дослiджено RG-модуль A такий, що R — асоцiативне кiльце, CG(A) = 1, та кожна власна пiдгрупа H групи G, для якої R-модуль A/CA(H) є нескiнченним, скiнченно породжена. Група G, яка задовольняє цi умови, називається AFF-групою. Доведено, що локально
розв’язна AFF-група є гiперабелевою. Описано структуру AFF-групи G у випадку, коли G
є скiнченно породженою розв’язною групою та R-модуль A/CA(G) є нескiнченним.
We study an RG-module A such that R is an associative ring, CG(A) = 1, and each proper
subgroup H of G with infinite A/CA(H) is finitely generated. The group G under consideration is
called an AFF-group. It is proved that a locally soluble AFF-group is hyper-Abelian. We describe
the structure of an AFF-group G such that G is a finitely generated soluble group, and R–module
A/CA(G) is infinite.
|
| issn |
1025-6415 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/86180 |
| citation_txt |
Обобщенно разрешимые AFF-группы / О.Ю. Дашкова // Доповiдi Нацiональної академiї наук України. — 2013. — № 10. — С. 18–22. — Бібліогр.: 9 назв. — рос. |
| work_keys_str_mv |
AT daškovaoû obobŝennorazrešimyeaffgruppy AT daškovaoû uzagalʹnenorozvâzniaffgrupi AT daškovaoû affgroupssolubleintheextendedsense |
| first_indexed |
2025-12-07T15:19:59Z |
| last_indexed |
2025-12-07T15:19:59Z |
| _version_ |
1850863307617992704 |