Комбинационные численные методы с минимальной погрешностью дискретизации

Побудовано клас комбінаційних числових методів, для яких похибка дискретизації зменшується зі зростанням порядку комбінації. Отримана комбінація, для якої з точністю до членів другого порядку малості похибка дискретизації відсутня. Наведені аналітичні оцінки похибки дискретизації апробовані при анал...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2013
Автор: Заяць, В.М.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/86220
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Комбинационные численные методы с минимальной погрешностью дискретизации / В.М. Заяць // Кибернетика и системный анализ. — 2013. — Т. 49, № 2. — С. 115-120. — Бібліогр.: 11 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Побудовано клас комбінаційних числових методів, для яких похибка дискретизації зменшується зі зростанням порядку комбінації. Отримана комбінація, для якої з точністю до членів другого порядку малості похибка дискретизації відсутня. Наведені аналітичні оцінки похибки дискретизації апробовані при аналізі консервативних систем без втрат, кварцових генераторів та високодобротних систем з тривалими перехідними процесами. A class of numerical combination methods is developed where the discretization error decreases as the order of combination increases. A combination is obtained for which the discretization error is absent up to the second order of smallness. The analytical error estimates are tested in the analysis of conservative systems without losses, quartz oscillators, and high-Q systems with long transients.
ISSN:0023-1274