Комбинационные численные методы с минимальной погрешностью дискретизации

Побудовано клас комбінаційних числових методів, для яких похибка дискретизації зменшується зі зростанням порядку комбінації. Отримана комбінація, для якої з точністю до членів другого порядку малості похибка дискретизації відсутня. Наведені аналітичні оцінки похибки дискретизації апробовані при анал...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2013
1. Verfasser: Заяць, В.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/86220
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Комбинационные численные методы с минимальной погрешностью дискретизации / В.М. Заяць // Кибернетика и системный анализ. — 2013. — Т. 49, № 2. — С. 115-120. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Побудовано клас комбінаційних числових методів, для яких похибка дискретизації зменшується зі зростанням порядку комбінації. Отримана комбінація, для якої з точністю до членів другого порядку малості похибка дискретизації відсутня. Наведені аналітичні оцінки похибки дискретизації апробовані при аналізі консервативних систем без втрат, кварцових генераторів та високодобротних систем з тривалими перехідними процесами. A class of numerical combination methods is developed where the discretization error decreases as the order of combination increases. A combination is obtained for which the discretization error is absent up to the second order of smallness. The analytical error estimates are tested in the analysis of conservative systems without losses, quartz oscillators, and high-Q systems with long transients.
ISSN:0023-1274